ÀÇ·áAI
¹øÈ£ ¨Ï Á¦ ¸ñ Ãßõ
Á¦1ȸ Medical AI (MAI) °æÁø´ëȸ (ÇѼº´ë ÀåÇö°â, ½ÅÇö¼öÆÀ ÃÖ¿ì¼ö»ó ¼ö»ó)
2024-11-15
AI ½Å¾à°³¹ß µÚÈçµé °ÔÀÓüÀÎÀú µîÀå
2025-02-25
¡Ú¡Ú¡Ú µåµð¾î ¾Ï Á¤º¹Çϳª¡¦±¸±Û µö¸¶Àεå CEO "AI·Î ¸ðµç Áúº´ Ä¡·á"
2024-10-03
¡Ú¡Ú±¸±Û µö¸¶Àεå, '¾ËÆÄÆúµå 3' °ø°³..."´Ü¹éÁú »ý¼º ³Ñ¾î »ýü ºÐÀÚ ¿¹ÃøÀ¸·Î È®Àå"
2024-10-05
ÀΰøÁö´É, ±â¼úÀû µµ±¸ ³Ñ¾î 'ÀÇ·á ±³À°ÀÇ ÆÐ·¯´ÙÀÓ' ±Ùº»ÀûÀ¸·Î º¯È­½ÃŰ´Â ÇÙ½É µ¿·Â
2025-01-01
¡øÃÖ±Ù °Ô½Ã±Û¡ù ÀΰøÁö´É, Ç×»ýÁ¦ ³»¼º±Õ ÅðÄ¡ »õ µ¹ÆÄ±¸ ¿­´Ù!...MIT ¿¬±¸Áø, »ý¼ºÇü AI·Î ½Å°³³ä Ç×»ýÁ¦ °³¹ß
25-08-26
[¹ÙÀÌ¿ÀÇコ µðÁöÅÐÇõ½ÅÆ÷·³]±Û·Î¹ú ÀÇ·áAI °æÀï·Â, ½Å¼Ó ½ÃÀå ÁøÀÔ¡¤¿¬±¸ »ýŰè Á¶¼º ½Ã±Þ
25-08-26
¾à¹° Èĺ¸ '¶Òµü'¡¦ KAIST ±è¿ì¿¬ ±³¼öÆÀ, Ç¥Àû ´Ü¹éÁú¿¡ ÃÖÀûÈ­µÈ ½Å¾à ¼³°è AI °³¹ß
25-08-15
¹è°æÈÆ Àå°ü, "÷´Ü¹ÙÀÌ¿À À°¼ºÇϰí, ÀΰøÁö´É°úÀÇ °áÇÕÀ¸·Î Çõ½Å °¡¼ÓÇϰڴÙ"
25-07-27
ÀÇ·á AI, º´¿ø°ú ÇÔ²² ÀÚ¶õ´Ù¡¦°³¹ßºÎÅÍ ÀÓ»ó±îÁö '°øµ¿ ¼³°è'
25-07-25
"¾Ï Áø´Ü°ú Ç×¾ÏÁ¦ °³¹ß µî¿¡ Çõ½ÅÀûÀ¸·Î ±â¿©ÇÒ °Í!".
25-07-16
Á¶´ÜÀ§ ¡®ºòµô¡¯ ½ñ¾ÆÁö´Â AI ½Å¾à °³¹ß¡¦ùÛÁ¤ºÎµµ ¼Óµµ ³½´Ù
25-07-05
±³¼ö Ãßõ ÁÖÁ¦ (°è¼Ó ¾÷µ¥ÀÌÆ®)¨Õ
±â¸»°úÁ¦ °ü·Ã ÀÚ·á (±â»ç, ±â¼ú Àü¸Á, Àú³Î³í¹®, ¼®»ç/¹Ú»çÇÐÀ§ ³í¹®, ¿ÀÇ ¼Ò½º µî)
Âü°í »çÀÌÆ®
283       ¦¦❸ lData preprocessing for deep learning: How to build an efficient big data pipeline 10
282       ¦¦❸ lSelf-supervised learning tutorial: Implementing SimCLR with pytorch lightning 20
281       ¦¦❸ lUnravel Policy Gradients and REINFORCE 5
280       ¦¦❸ lThe idea behind Actor-Critics and how A2C and A3C improve them 22
279       ¦¦❸ lHow Positional Embeddings work in Self-Attention (code in Pytorch) 17
278       ¦¦❸ lWhy multi-head self attention works: math, intuitions and 10+1 hidden insights 12
277       ¦¦❸ lIntroduction to 3D medical imaging for machine learning: preprocessing and augmentations 29
276       ¦¦❸ lExplainable AI (XAI): A survey of recents methods, applications and frameworks 39
275       ¦¦❸ lIn-layer normalization techniques for training very deep neural networks 1
274       ¦¦❸ lBest Graph Neural Network architectures: GCN, GAT, MPNN and more 12
273       ¦¦❸ lHow Graph Neural Networks (GNN) work: introduction to graph convolutions from scratch 5
272       ¦¦❸ lGANs in computer vision - Improved training with Wasserstein distance, game theory control and progre... 12
271       ¦¦❸ lGANs in computer vision - Introduction to generative learning 31
270       ¦¦❸ lHow diffusion models work: the math from scratch 9
269       ¦¦❸ lTransformers in computer vision: ViT architectures, tips, tricks and improvements 9
268       ¦¦❸ lHow the Vision Transformer (ViT) works in 10 minutes: an image is worth 16x16 words 63
267       ¦¦❸ lHow Transformers work in deep learning and NLP: an intuitive introduction 20
266       ¦¦❸ lHow Attention works in Deep Learning: understanding the attention mechanism in sequence models 10
265       ¦¦❸ lThe theory behind Latent Variable Models: formulating a Variational Autoencoder 30
264       ¦¦❸ lHow to Generate Images using Autoencoders 14

[1][2][3][4][5][6][7][8][9][10]-[Next][17]