ÀÇ·áAI
(
ÃÖ±Ù °Ô½Ã±Û ¼ø
)
<¿ø °Ô½ÃÆÇ>
¹øÈ£
¨Ï
Á¦ ¸ñ
̵̧
µî·ÏÀÏ
¨Õ
±³¼ö Ãßõ ÁÖÁ¦ (°è¼Ó ¾÷µ¥ÀÌÆ®)
±â¸»°úÁ¦ °ü·Ã ÀÚ·á (±â»ç, ±â¼ú Àü¸Á, Àú³Î³í¹®, ¼®»ç/¹Ú»çÇÐÀ§ ³í¹®, ¿ÀÇ ¼Ò½º µî)
Âü°í »çÀÌÆ®
196
¦¦❸
l
In-layer normalization techniques for training very deep neural networks
8
08-23
195
¦¦❸
l
Best Graph Neural Network architectures: GCN, GAT, MPNN and more
29
08-23
194
¦¦❸
l
How Graph Neural Networks (GNN) work: introduction to graph convolutions from scratch
10
08-23
193
¦¦❸
l
GANs in computer vision - Improved training with Wasserstein distance, game theory control and progre...
7
08-23
192
¦¦❸
l
GANs in computer vision - Introduction to generative learning
16
08-23
191
¦¦❸
l
How diffusion models work: the math from scratch
17
08-23
190
¦¦❸
l
Transformers in computer vision: ViT architectures, tips, tricks and improvements
4
08-23
189
¦¦❸
l
How the Vision Transformer (ViT) works in 10 minutes: an image is worth 16x16 words
52
08-23
188
¦¦❸
l
How Transformers work in deep learning and NLP: an intuitive introduction
16
08-23
187
¦¦❸
l
How Attention works in Deep Learning: understanding the attention mechanism in sequence models
12
08-23
186
¦¦❸
l
The theory behind Latent Variable Models: formulating a Variational Autoencoder
18
08-23
185
¦¦❸
l
How to Generate Images using Autoencoders
21
08-23
184
¦¦❸
l
Recurrent neural networks: building a custom LSTM cell
13
08-23
183
¦¦❸
l
Best deep CNN architectures and their principles: from AlexNet to EfficientNet
15
08-23
182
¦¦❸
l
A journey into Optimization algorithms for Deep Neural Networks
17
08-23
181
¦¦❸
l
Regularization techniques for training deep neural networks
22
08-23
180
¦¦❷
l
Self-attention-cv (various self-attention mechanisms focused on computer vision)
1
08-23
179
¦¦❷
l
MedicalZooPytorch (multi-modal 2D/3D medical image segmentation)
27
08-23
178
¦¦❷
l
AI Summer - Medical
20
08-23
177
¦¦❷
l
Medical Open Network for AI (MONAI)
5
08-23
[1]
[2]
[3]
[4]
[5]
[6]
[
7
]
[8]
[9]
[10]
-
[Next]
[16]
Á¦¸ñ
À̸§
³»¿ë
̵̧
Àüü
+ °Ë»ö tip : 1) ¹®ÀÚ¿°Ë»ö 2) OR(|) Á¶°Ç°Ë»ö 3) AND(&) Á¶°Ç°Ë»ö