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ABSTRACT razor) by requiring the set of model parameters to be minimal. For
Motivation: The immune response to bacterial infection represents genetic networks this assumption is further justified by the observa-
a complex network of dynamic gene and protein interactions. We tion that genetic networks are sparsely connected (Yetalg 2002
present an optimized reverse engineering strategy aimed at a recon- and references therein).

struction of this kind of interaction networks. The proposed approach In standard gene expression profiling there are many more vari-
is based on both microarray data and available biological knowledge. ables (v genes) than measuremenfd ¢ime points). As a con-
Results: The main kinetics of the immune response were identified by sequence, the gene interaction matrix & N entries) of linear
fuzzy clustering of gene expression profiles (time series). The num- models cannot be uniquely determined by the measurement mat-
ber of clusters was optimized using various evaluation criteria. For rix (N x M entries). Several approaches have been proposed to cope
each cluster a representative gene with a high fuzzy-membership with this problem:

was chosen in accordance with available physiological knowledge.
Then hypothetical network structures were identified by seeking sys-
tems of ordinary differential equations, whose simulated kinetics could
fit the gene expression profiles of the cluster-representative genes.
For the construction of hypothetical network structures singular value

(1) Interpolation and subsequent resampling of the experimental
time courses (e.g. D’haeselatal., 1999) being able to gen-
erate almost any number of semi-empirical measurement data
(enlargement oM).

decomposition (SVD) based methods and a newly introduced heur- (2) Singular value decomposition (SVD) based methods (Holter

istic Network Generation Method here were compared. It turned out et al., 2001; Yeunget al., 2002) that calculate a solution to

that the proposed novel method could find sparser networks and gave the interaction matrix by imposing additional mathematical

better fits to the experimental data. constraints.

Contact: Reinhard.Guthke@hki-jena.de (3) Methods for finding sparse interaction matrices by combinat-
orial search strategies (Chenal., 1999; van Somerest al.,

1 INTRODUCTION 2001).

Discovering and understanding the complex molecular interactions (4) Clustering of gene expression time series (reductionpf
that make up living organisms is one of the most interesting and chal- and use of cluster-representatives for subsequent modeling

lenging problems of modern molecular biology, systems biology and (D'haeseleegt al., 2000; Wahde and Hertz, 2000; Mjolsness
bioinformatics. A commonly accepted top-down approach to unravel et al., 2000).

the structure of these systems is to reverse engineer gene regulat-

ory networks from experimental time series data (D’haesetesr, The first approach has major drawbacks since it cements microarray

2000; de Jong, 2002; Csete and Doyle, 2002). Usually, the measuredeasurement errors and introduces some arbitrariness through the

data record spontaneously running processes, like cell division anchoice of interpolation method especially for undersampled data. In

cell differentiation, or reactions to external stimuli, like responsesthe present paper, clustering and a combinatorial search strategy were

to bacterial infection (Boldriclet al., 2002). The observed changes chosen as the primary approaches to reduce the indeterminacy of the

in gene expression over time are either due to direct effects of thenteraction matrix.

stimulus on specific genes or result from secondary gene—gene inter- Clustering as a means for reducing the number of variables can

actions. The aim of reverse engineering is then to detect the mod$te justified by the presence of regulatory motifs (D’haesedealr,

likely interactions by identifying sets of relevant model parameters2000). From a system theoretic point of view coarse graining of

that are required to obtain an appropriate correspondence betweerpression profiles means eliminating redundant information (in

measured data and model output. Often the amount and the qualitgrms of indistinguish-ability). However, it has to be done with the

of the experimental data at hand is insufficient for an unequivocahighest possible accuracy in order to preserve and extract the existing

assignment of the model parameters. A widely used approach tdata structure.

resolve this indeterminacy is to favor simple mechanisms (Occam’s We introduce a novel approach of data-driven reverse engineering
that generates probable gene regulation network models based

*To whom correspondence should be addressed. on a combination of optimized clustering and optimized network
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Dynamic network reconstruction

reconstruction. While the optimization of clustering concentrates orindependent set[l;. The convergence of the curvés, that allows for a
effective cost function minimization and robust cluster validation, theunique estimation in the number of clusters, was achieved step by step: each
optimization of network reconstruction is directed to a simultaneougdartition =¢; was improved duringl’ runs of the FCM algorithm using
minimization of both the number of interaction parameters and thdandom run initialization, and retaining the best result, i.e. the partition
model error. Both steps, optimized clustering and subsequent optinfici[best: Thest € {1, ..., T}, with the smallest value of the FCM objective

. - - . function. T is a measure of the optimization effort, whereby, here, multiple
ized network generation, are compared with alternative methods. T .
local optimization is used to approach the global minimum, and one run of

. The newly proposed approach is demonstrat_ed. Us'“g data on ﬂ?ﬁe FCM algorithm is the scale unit of the optimization effort.
immune response of human blood cells to bacterial infection recorded

by Boldrick et al. (2002). It is compared to established SVD based2.3 Selection of cluster-representative genes

methods (\_(e_ung:t al., 2002). . . . Foreach cluster one representative gene was selected. The following selection
Summarizing, the present reverse engineering approach congsg&eria were used: The representative gene

of four steps: (1) data pre-processing, (2) optimized fuzzy clustering

and cluster validation, (3) selection of cluster-representative genes

by the degree of cluster membership and available biological know- ® is annotated with a known immunological function, and

ledge, and (4) generation of probable dynamic network models by e is represented by an expression profile with no missing values.

fitting the _simulat_epl kinetics to the experimental expression profilesspsequently, the expression profiles of the selected genes were used for
at hand with a minimum number of model parameters. modeling.

e isassigned to one cluster with a high fuzzy membership degree n (MSD),

2.4 Dynamic modeling

) The dynamics of hypothetic gene regulatory networks was modeled by
2.1 Data pre-processing systems of linear differential equations. Their general solution is a linear
Gene expression data of peripheral blood mononuclear cells (PBMC ombination of exponentially damped (stable) or excited (unstable) oscilla-

infected byEscherichia coli were obtained from the internet (http:/genome- ions. Apart from its inherent simplicity an advantage of this approach is that
www.stanford.edu/ hostresponse/; Boldratkal., 2002). The data represent linear algebraic methods can be used to fit its free parameters to experimental

logarithmized ratios (log-ratios) of the expression intensities of 18 432 genedata. The general mathematical form reads

2 METHODS

or ESTs at five time points(r = 0.0,0.5, 1.0, 2.0, 4.0)hbefore and after dx; (1) c

an infection with heat-killed pathogenk.coli. The log-ratios at = 0 = Zw,-'j xj(t) + b - u(t) (1)
(unperturbed state) were subtracted from the respective time series, i.e. dr j=1

only differences with respect to the pre-infection state were considered. Th% whichx; (1) is the expression of gerte= 1, ..., C attimer, wy.; denotes a

resulting log-ratios range from10.4 to 8.7 (log-values). A total of 1336 ’ : - . . .
o A . ne—gene interaction matrix ahdrepresents an external (infection) stim-
genes was selected by requiring an upregulation or downregulation of at lea: ) - .
3 . ) ) .~ ulus response vectai(r) is the Heaviside step function{r < 0) = 0 and
a factor 8=2°). For cluster analysis the time profiles were scaled by their - ) S L
. o . u(t > 0) = 1, i.e. the influence of bacterial infection is taken to be constant

respective absolute temporal extreme values to focus on qualitative behavior. —. - . [

S ; : . over time (for 4 h). In addition, the system is assumed to be at equilibrium
Missing data were imputed by using a method based bmearest neigh- . . S

. ) prior to stimulation, i.e. &; (r < 0)/dt = x;(t < 0) = 0.
bor algorithm (Troyanskayet al., 2001). The value of, finally selected )
. Genetic networks are known to be sparsely connected (Yetualg 2002

from a set of tested values, led to robust clusters and the smallest differences . . ; .

) . ) ._and references therein). The aim of dynamic modeling and network recon-
with respect to additionally removed and re-imputed values. For modelin C . . }

. . - truction is thus to find a minimal set of relevant (i.e. non-zero) model

the unscaled log-ratios only data with no missing values were used. . . . .
parametersy;,; andb;) required to achieve an adequate fit to the expression
2.2 Clustering and cluster validation data at hand.
The clustering results subsequently used for network modeling were obtaine@.5 Dynamic modeling using SVD

from the fuzzy C-means (FCM) algorithm (Bezdek and Pal, 1992). FCM Was%ubstantiating Equation (1) for the measuring time paints. ., £, results

selected as the method of choice after a pre-investigation that comprise : . : . o

: ; . f mf a system of linear algebraic equations. The time derivatives have to be
several clustering approaches (see Discussion section). The number Bltimated from the experimental data oints (presently by linear interpola-
clusters was estimated by the vote of 42 cluster validity indices: (1) 18 P P P y oy P

generalizations of Dunn’s index (Bezdek and Pal, 1998), (2) the same 1gon). Usually, the number.of measurementsis smaller than the_nl_meer
of measured gends rendering the system under-determined [infinite num-

generalizations applied to thg Daws—BquIdln index (Bolshakova and Azuaje, er of solutions for(W);; = w;.;]. Solving the matrix equation by SVD
2003), (3) the mean cluster silhouette width (Kaufman and Rousseeuw, 199 olter et al.. 2001 Yeuhgat al -2002) involves selection of the matrik
and (4) indices proposed by Gouteal. (1999); Ray and Turi (1999); Fadili N : ;

et al. (2001); Kim et al. (2001) and Pakhirat al. (2004). These indices '10S¢ rOWs have the smallest Euclidadn) norm. In addition, the SVD
matrix decomposition provides a means of finding a solution, for which the

capture different a_spects of a clustering structurg. . rows of W have the smallest city bloal.1) norm (Yeunget al., 2002). Both
The FCM algorithm converges to a local optimum. The obtained result SN o

- o - methods [2- and L1-norm minimization) can be regarded as regularization

is likely to be random because the initial partition can only be chosen heurfechni ues aimed at finding a minimal set of non-zero model parameters

istically or randomly (Pefiat al., 1999). Therefore, the estimated number q 9 P '

qf cI.u_sters may glso pe randqm, and no algorithmic output quantifies th%_G Dynamic modeling usi ng asearch strategy

significance of this estimate. Mdllet al. (2002) have presented an approach ) i o

that copes with both problems. An improved version of this approach wadn this paper, a new Network Generation Method for the estimation of

used here. Commonly, a validity index vectdr= (v2, ...,vc, . .., UCmac): the interaction matriX and the stimulus response vectoaccording to

is calculated based on asBt= {7¢}, of locally optimal candidate partitions, ~Equation (1) is proposed. This modeling approach is characterized by an

¢, each with a different number of cluste6s, In the present study, however, ~€xplicit optimization of the model structure.

the number of clusters was estimated from an array of convergent index The method developed employs a heuristic search strategy that separ-

curves,V = {Vi, ..., Vs}, where each curv&; was calculated from an  ates the structure identification from the parameter identification problem
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by examining and comparing models with different connectivity. For each Here, the geneg with j € D; have been found to significantly influence
screened model structure the following procedure is performed: (1) The modehe expression of gerie
parameters are fitted to the gene expression data using standard optimizationSopping criterion. In the forward selection mode, interactions are added
techniques. (2) The resulting model is simulated to obtain the model outpuif the following conditions are met: (1) The increased model complexity
(3) The mean square error (mse) between the model output and the datale&ads to a considerably improved model fit. (2) The number of parameters
determined and is subsequently used to assess the model structure. of the expanded submodel is smaller than the number of data points in the
Even for small network models it is impractical to consider all possible corresponding time series. (3) The number of interactions of the expanded
model structures. Therefore, the Network Generation Method employs aubmodel stays below a pre-defined limit. (4) In order to avoid overfitting,
strategy that restricts the search space by directing the search towards simple mse of the submodel to be expanded is still larger than a pre-defined
and plausible model structures and by exploiting prior knowledge concerningnaximum allowed submodel err@nax.
the connectivity between genes. The developed approach significantly sim- In the backward elimination mode, interactions are removed if the fol-
plifies the structure search by decomposing the overall identification problentowing conditions are fulfilled: (1) The decreased model complexity only
into a number of” separate identification steps, i.e. the submodels fo€the leads to a marginally worsened model fit. (2) The sparser model structure
gene expression time series are identified separately. remains biologically plausible. Submodel structures with only one non-zero
In general, a search strategy consists of three components: an initial modphrametemw; ; (the self-regulation parameter) are meaningless with respect
structure, a direction of search and a stopping criterion (van Soneeetn to interactions and are generally excluded by the applied search strategy.
2001). The following search strategy is applied: Model parameter identification for a given submodel structure is a
. L ) ) repeatedly executed operation. In this approach, the parameter identification
_In_'t,'aj submodel structure.  The submodel estimation starts with a simple is performed by a constrained nonlinear optimization algorithm that min-
initial squodel that represents a first order lag element. The s_ubmodef izes the mean square error between the model fit and the pre-processed
of gene; possesses two non-zero parameters;_ the pargm@temallzes expression data. The self-regulation parameters, are constrained by the
the selfreg_ulanon effect and the Paraméiﬁdescnbes the influence of the conditionw;; < 0, i.e. the generated submodels are locally stable. Suitable
exte_rnal_stlmulus onthe expression of gene initial parameters for the iterative non-linear optimization are obtained using
Direction of search. Two directions of search are allowed: forward , ji,05 ohtimization method. The required time derivatives are calculated
selection and backward elimination. The method comprises three phases: based on Hermite interpolation between the data points. These time deriv-

atives are exclusively used in order to find initial parameter values for the

(1) In the first phase, a forward selection of the most likely interactions ) . T
iterative nonlinear optimization procedure.

is performed. Thus, the model complexity is increased by adding
new gene—gene interactions or stimulus response components. Stay-

ing from the initial submodel with two parameters, in the firstiteration, % RESULTS

all possible submodel structures with three parameters are examine®,1  Clustering and cluster validation

The best solution with respect to the model fit is retained and furtherF. re 1 sh how the clustering and cluster-validation or dur
expanded in the next iteration. This so called greedy hill-climbing Igure 1 shows how the clustering and cluster-validation procedure

proceeding is continued until a stopping criterion is met. provided guidance for the visual determination of the number of
clusters. According to Section 2.2, each panel of Figure 1 presents

The model growing of the first phase bases on the assumption that th

best intermediate solution is a part of the best final solution. Since thist%e array of validity index curves] = {V, ..., Vs}, afterT’ runs of

assumption does not have to be true, unimportant interactions may bglusterlng. Afterl = Sruns, the \_/E_i"d'ty index Curves exhibited r‘j’m'
included. Therefore, the second phase realizes a backward eliminatiodOM courses. At this stage partitions were obtained that contained a
of gene—gene interactions and stimulus response components. In ordegdundant cluster, and one of the unique expression patterns, present
to decrease the model complexity all possible solutions that resulin the data, remained unrecognized. With increasing optimization
from the removal of one interaction are considered. Again, the beseffort the curves became more similar until (for = 100) they
solution is retained and tested for possible further removals until agxhibited a consistent pattern with respect to their indicative extrema
stopping criterion is met. (Fig. 1) and only then an unequivocal interpretation was possible.
The third phase aims to obtain an improved model fit by adapting theThe computation effort7’, that was necessary for an unequivocal
type of dynamic dependency between the interacting genes. The gefinterpretation depended on (1) the cluster validity index (Fig. 1,
eral model structure Equation (1) involves first order dynamics forall 7 — 50: gne index yielded estimates of 6 or 7, the other index a
submodels. In order to overcome this limitation, the presented Net'unique estimate of 6), (2) the number of clusters, (3) the dataset
work Generation Method allows to identify submodels that consist Ofgresult of the pre-investigation, not shown) and (4) other paramet-

R differential ti dthat, tly, tlagel t L o
frerentia’ equations and that, consequently, representiag @ emer]ers, e.g., the strength of the FCM termination criteria and the fuzzy

of orderR. The search strategy tests different dynamic orders up to a .
pre-defined maximum dynamic ordRp,ax and selects the best fitting exponentr. T_he subseguent resul_ts, obta_mgdrfo& 1.5, proved

one. Although, the dynamic behavior of the higher order submodeldl© be robust, i.e. choosing = 2.0 yielded similar results.

included changes significantly, their allowed parameterization is The clear majority vote of the 42 validity indices suggested that
strongly restricted to transfer functions with equal poles and no  the data set has a coarse structure of two clusters, and a finer struc-
zeros. Higher order submodels are well suited to identify regulatoryture of six clusters. Thirty two indices had their global optimum at
interactions that are characterized by significant time delays. Theyc = 2. Twenty eight indices exhibited a clear extremuntCat 6,

preserve the connectivity of the network model and have the form - peing the global optimum for 6 and the first local optimum for 22 of

@

~

3

~

dx; 1 these indices. Because the 6-cluster partition appears to be biologic-
ar Z Wi+ Xj (O F wi - i1 () + bi - u®) ally more meaningful than the 2-cluster partition, it was used in the
Jebi subsequent modeling study (Table 1, Fig. 2).
iy =xip-1() +wii-xip @), r=2,...,R-1 ) 3.2 Sdecti i
dr : A . ion of cluster-representative genes

dx; Table 1 shows the selected genes. The required selection criteria met

o = RO+ w50 perfectly with very high MSD(>0.95 and without missing data.
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Generalized DavisBouldin Index62 Generalized Dunn Index53
T=1

é 4 6 8 1.0 1.2 1.4 1.6 1.8 2.0 2 4 6 8 16 1.2 1.4 1.6 1.8 2.0
T=5

2 4 6 8101214161820 2 4 6 6 10 12 14 16 18 20
T=20

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
T=50

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
T=100

2 4 6 8101214161820 2 4 6 6 10 12 14 16 18 20

number of clusters, C number of clusters, C
Fig. 1. Array of cluster validity index vectory/ = { V4, ..., V1o}, recorded aftef’ runs of the FCM algorithm, as a function of the number of clustér§,he

ten curves are superimposed in each box. Left: Generalized Davis—Bouldin index (DBI) with the Hausdorff metric for measuring the distancelsétvgeen cl
and the average interpoint distance for measuring the cluster diameter (DBI scale: 0.8-1.1). Right: Generalized Dunn index (DI) with the ceetrai-to
distance between clusters and the points-to-centroid distance for the cluster diameter. (DI scale: 0.4-1.3). A minimum of the DBI and a maxibum of the
are estimates in the number of clusters. More than one clear extremum indicates structure at different levels of resolution.

Table1l. NumberN of genes belonging to clusterc =1, ..., C) with the IL1A, NFKBIE, STAT1, STAT5A and HLA-DMA are known to be
MSD >50% as well as the selected representative genes (MSD Symbol anghyolved in immune response after infection.
Function)

3.3 Dynamic modeling

¢ N MSD Symbol  Function Figure 3 shows the gene expression kinetics obtained from SVD-
based dynamic modeling according to Equation (1). The simulated

1 494 0.992 IL1A Interleukin 1, alpha kinetics for the lp- and Ly -fits are graphically indistinguishable. For

2 269 0.958 CD59 Antigen the Ly-approach all of the 42 possible parameters, i.e. 36 gene—gene

3 97 0.989 NFKBIE  Nuclear factor of kappa light polypeptide interaction coefficients); ; and 6 stimulus associated coefficiebits

gene enhancer in B-cells inhibitor, epsilon
4 67 0.999 STAT1 Signal transducer and activator of
transcription 1
5 137 0.995 STAT5A Signal transducer and activator of
transcription 5A

are present (fully connected network). Thefit according to Yeung
et al. (2002) reduces the number of non-vanishing model parameters
nto31(mse= 1.512.

The optimized model structures obtained from the proposed Net-

6 188 1.000 HLA-DMA Major histocompatibility complex 11, DM work Generation Method configured with a maximum allowed
alpha submodel error ofEmax = 1 and a maximum dynamic order of

Rmax = 1 andRmax = 3 are shown in Figures 4 and 5, respectively.
The cluster means and standard deviations are shown in Figure 2. The number of non-zero parametersvas reduced to 14 and 15,
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Fig. 2. Result of the FCM clustering with six clusters: mean normalized gene expression profiles with standard deviation averaget @erebéor the

respective cluster (Table 1).

respectively. Model (3) describes the structure of Figure 4 in detailNFKBIE andHLA-DMAin comparison with those shown in Figures 4

(The variablesy, ...

STAT1, STAT5A andHLA-DMA, respectively.)

d
O)l‘tl = —2.99. x; — 14.8- u(t)
de
== —2.41-x1 — 2.20- xp + 14.9- u(z)
dX3
= = 4.43. x; — 2.03- x3 — 21.5- u(t)
d
g =2.15.x3— 1.52- x4
dX5
— = 2.59- x4 + 2.31- u(t)
dr
dxg
. = —1.02- x1 +3.82- u(r)

, xg are the log-ratios ofL1, CD59, NFKBIE,

®)

and 5 ¢ = 13; mse= 0.5250).

Randomly disturbed input data were used for a bootstrapping study
to assess theimpact of measurement error and test the reliability of the
structures generated. The analyses were repeated 1000 times using
input data obtained by adding normal distributed random deviates
with a standard deviatios. With Rnax = 1, Emax = 1 ando = 0.1
the structure shown in Figure 4 was confirmed 961 times, i.e. in 96%
of the cases, except for the negative link fridA to CD59 which
was found only 499 times. The exciting cascade from the infection
via IL1A to NFKBIE as well as the inhibitory link from infection to
NFKBIE was found to be the consensus structure for all 1000 runs

with o = 0.1, 896 runs (90%) witle = 0.5 and 645 times (65%)
with o = 1.0.

4 DISCUSSION AND CONCLUSION

The current study proposes a systems biology approach to analyze
the dynamic behavior of the immune response to bacterial infection.

The simulated kinetics are displayed in Figure 6. The mse wast demonstrates how to reconstruct the structure and dynamics of
0.6304 and 0.1710, respectively. The influence of two configuratiora functional module of the immune system by analyzing stimulus—

parameters, the maximum dynamic ord&fa.x and the maximum

allowed submodel erroEmax Was investigated. FORmax = 2, a

similar structure to that faRnax = 3 (Fig. 5) was obtained. However,

it contained only second order lag elements @59 and STAT1
and had an error of mse 0.2337. SettingEmax = 2 andRmax = 1
resulted in a structure that preserved the interrelations betwé&n

response data from perturbation experiments and by using available
knowledge. The reverse engineering approach presented in this
paper combines clustering techniques with network inference. Sim-
ilar ideas have already been published (D’haeseteet., 2000;
Mjolsnesset al., 2000; Wahde and Hertz, 2000). However, both
methods were optimized in this work.
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IL1A CD59 NFKBIE

2
STAT1 STATS5A HLA-DMA

o~

6 - 5 L
0 2 4 0 2 4
t [h] t [h] t [h]

Fig. 3. Measured and simulated expression kinetics (log-ratios) for the genes selected as representatives of the 6 clusters (Table 1). The sirnslated kineti
(lines) were obtained from Equation (1) and SVD. msé&.512.

Fig. 4. Structure of the dynamic system described by Equation (3) for ) ) ) ) ]
the gene expressions of the representatives of clusters 1-6 generated big- 5. Alternative structure of the dynamic system with third order time
the proposed Network Generation Method configuredRimax — 1 and ~ 'ag elements foICD59 and STAT1 obtained from the proposed Network

Emax = 1. The arrows represent stimuli or activations. The T-shaped linksGeneration Methods configured Bax = 3 andEmax = 1.
(L) represent inhibitions. Grey boxes denote elements with non-zero (decay
or self-regulation) elements; ;. The thick links indicate the connections
confirmed by bootstrapping. with few time points which is typical and most common in infection
biology research due to the high costs of microarrays.
The reverse engineering approach proposed in this paper consists

The proposed algorithm was also applied to gene expressioaof four steps: (1) data pre-processing, (2) data clustering and cluster
time series with more time points, e.g. recordings of Eheoli validation, (3) selection of representative genes and (4) dynamic
stress response during recombinant protein expression (Schmidtiodeling of the kinetic behavior of the cluster-representatives. The
Hecket al., 2004). In the present study, we focused on an applicatioraim of the first two steps is to reduce the number of variables (in
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IL1A CD59 NFKBIE
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Fig. 6. Measured and simulated expression kinetics for the genes selected as representatives of the six clusters. Simulations using optimisedmsdel struct
shown in Figures 4 (thick lines; mse 0.6304) and 5 (thin lines, mse 0.1710).

our example from 18432 to 6), i.e. to identify the main componentsfor the proposed Network Generation Method. Advantages of util-
that represent the dynamic answer to the infection stimulus. izing FCM have already been presented (Guttlad., 2000; Gasch
From a statistical learning perspective, clustering is subdividedand Eisen, 2002).
into (1) combinatorial algorithms, (2) mixture modeling and (3) One may view the above prototype-based clustering (PC) as an
mode seeking (Hastiet al., 2001). No single tool has emerged as alternative choice to the model-based clustering (MC) used, e.g. by
the method of choice for gene expression analysis. We selected typdjolsnesset al. (2000). Whereas MC involves a statistical model
(1), because it is most widely applied. First, several algorithms werehoice problem (Yeungt al., 2001), PC includes a parameter choice
tested on various simulated and gene expression data. Hierarchigaloblem. A novel solution is proposed here for the local optima
clustering, with 32 combinations of linkage method and distanceproblem that occursin both the MC and PC approaches. This solution
measure, provided highly inconsistent results. The ‘best’ clusteis a monitoring of the change in cluster validity measures depending
trees, with the largest cophenetic coefficient, led to inappropriat®n the computational effort for solving the local optima problem.
partitions. Prototype-based clustering together with validity indicesSpurious random clusterings, due to a limited computational effort,
captured known (simulated) clustering structures more adequatelgan be avoided. The novel approach relieves the user of a critical part
Here, the best results of the fuzzy (FCM) analysis yielded strongeof the parameter choice problem, i.e. of a heuristic decision that is
evidence of the clusters than hard clustering based on a local dfifficult to make. This can be interpreted as one option to increase
global optimization scheme (Mdlleat al., 2002). Self-organizing the ‘accuracy’ of microarray data analysis (Vilo and Kivinen, 2001;
maps (SOMs) depended on the map size, where a novel SOM vaGampbell, 2003). The procedure offers room to further optimize the
idation (Wu and Chow, 2004) often failed to estimate the number ofcalculations, e.g. for a particular dataset, number of clusters, and
non-trivial simulated clusters. algorithmic parameters (such as the fuzzy exponent). Nevertheless,
The correct estimation of the number of clusters is a fundamentabur type of multistep analysis is only one possibility. The choice of a
issue. This number directly affects the inferred network model bysuitable cluster validity index is a problem with a long history which
determining the number of network nodes. A wrong number ofhas not yet been solved (cf. Pakhigal., 2004). Some indices
clusters may thus lead to an inappropriate model and misleading bi@re correlated, because they quantify similar partition properties.
logical conclusions. Therefore, the FCM result served as the inputiowever, if the approach of relative cluster validity has become
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the method of choice, votes of different indices for the same valug@arameter valueBmax and Rmax. We usedRmax = 1 andEmax = 1
tend to increase the confidence (cf. Bezdek and Pal, 1998). Othas default configuratiorRmax = 1 means starting with the simplest
techniques, including resampling (Dudoit and Fridlyand, 2002) andnodel (first order lag elementkyax should be related to the experi-
bootstrapping (Hastiet al., 2001), are worth of being considered in mental noiseEmax = 1 means that a fold change? is considered to
future studies. be a significant change. In general, the complexity of the model and
The nodes of the gene regulatory network were selected from the number of model parameters increase wRggy is increased
sorted list of genes ranked by the fuzzy MSD obtained from clusteand Enax is decreased.
analysis (Table 1). Due to the currently limited knowledge about the Prior knowledge that concerns the existence or absence of either
physiological function of genes and their translational products, thigene—gene interactions or the influence of environmental factors
selection is somewhat arbitrary and other genes may be consideredean be included in the proposed Network Generation Method by
well. Forinstancel L6 as welladTNF« can be used as representatives pre-specification of initial submodel structures. The pre-defined
of cluster 1 instead ofL1A. Similarly, STAT6 can be selected for interactions or stimulus—response components are preserved by the
cluster 2, the CCAAT-box-binding protein for cluster 3, thi&AP search strategy. For instance, the interactions between infection,
kinase 4 for cluster 5 andCD31 for cluster 6. Cluster-representative IL1A andNFKBIE highlighted in Figures 4 and 5 could be used as
genes were selected from the fuzzy membership ranked gene list dvance information for further studies (data not shown). The cas-
using the available expert knowledge. This can be supported by textade from the infection stimulus vie1Ato NFKBIE and the fact that
mining tools (Shatkay and Feldman, 2003; Chiahd., 2004), e.g.  NFKBIE is primarily down-regulated by the infection was found as
by searching for known links between the infection stimulus and thea consensus structure for different configurations (Figs 4 and 5) and
considered genes. The literature hit rate resulting from such searchesotstrapping and can therefore be considered to be highly probable.
can be combined with (multiplied by) the fuzzy MSD obtained from This finding is corroborated by biological knowledge simtekB
cluster analysis in order to obtain a ranking score for the clusterthat is inhibited byNFKBIE is a transcription factor involved in
representative gene. inflammatory immune response. The present results suggest the fol-
The network models obtained from the SVD procedure are notowing response mechanism. The infection stimulates the expression
optimal with respect to a low number of model parameters andbf NFKB dependent genes via pro-inflammatory cytokine effected
a low mse. The modeling results, and specifically the reconstrucphosphorylation and subsequent degradatidWFd€B inhibitor pro-
ted network connectivities, strongly depend on the actual valuegeins (IkBs) such a®f\FKBIE (IL-1 signal transduction pathway).
assumed for the time derivatives. However, due to the sparsene$s addition NFKBIE turns out to be transcriptionally suppressed
of the gene expression data the time derivatives cannot be deterrby the infection stimulus, thereby enhancing the transcription of
ined reliably. From a system identification point of view (Ljung, NFKB dependent genes suchlasl. Evidently, IL-1 in turn induces
1999), the SVD method realizes a prediction error identificationNFKBIE expression as a counter-regulation and thus limits its own
that leads to biased parameter estimates in the presence of measer-expression and that of otHeFKB dependent genes.
urement noise. The proposed Network Generation Method, on the In order to ensure network model plausibility, a submodel is
other hand, realizes a model output identification and thus circumrequired to have a non-zero, negative self-regulation parameter
vents both drawbacks (i.e. the need for time derivates and the bias fositive self-regulation parameters lead to locally unstable sub-
the estimated parameters). models and are excluded by the method. However, self-regulation
Nevertheless, the solution of nonlinear optimization problems isparameters with zero value cannot be avoided, if a gene expres-
very time-consuming. The separation of the whole identificationsion time series, such as f&@AT5A (x5) and HLA-DMA (xe),
problem into distinct subproblems significantly alleviates this prob-has not yet reached a steady state during the measurement. Then,
lem, since each submodel parameter optimization involves a fevany parameter optimization algorithm sets the corresponding self-
parameters only. regulation parametew; ; to ~0 and, therefore, the applied search
The solution according to Yeurs al. (2002) in which the rows  strategy removes this parameter in the backward elimination mode
of the interaction matrix have the smallest possible city bldck [i.e. ws 5 = we = 0in Equation (3)]. Then, the reconstructed inter-
norm reduced the number of non-vanishing model parameters froractions of the respective genes are less reliable than those estimated
42 to 31 while leaving the time courses almost unchanged. The prder time series that have reached a steady state. Thus, the reconstruc-
posed Network Generation Method, on the other hand, optimized thi@on of regulatory interactions concerniSAT5A andHLA-DMA is
model structure by minimizing the number of non-vanishing modelquite vague.
parameters as well as the mse. For the immune response problemThe simulated gene expression fdFKBIE and STAT1 reach
studied here the number of parameters was reduced from 42 to Istationary values near the initial ones (log-ratios of 0.2 and 0.3,
(Fig. 4) and 15 (Fig. 5), i.e. by 67 and 64%, respectively. The mseespectively), whereas those kfl and CD59 reach up-regulated
was reduced from 1.5 (Fig. 3) to 0.63 and 0.17 (Fig. 6), i.e. by 58stationary values (log-ratios of 4.9 and 1.4, respectively). THEK-
and 89%, respectively. BIE and STAT1 are down-regulated only temporarily, wheréds
In the presented reverse engineering approach the inclusion @ndCD59 are permanently up-regulated during the infection.
available knowledge is possible through the selection of cluster- The relaxation to a unique steady state is a general property of
representative genes (Table 1) and by the configuration of thetable linear differential equations with a constant external forcing.
algorithm. Different configurations can generate different modelMultiple steady states as observed for some biological systems are
structures. The influence of two configuration parameters, the maxcaused by non-linearities. Non-linear terms can be included in the
imum dynamic ordeRmaxand the maximum allowed submodel error proposed modeling algorithm when they are pre-defined from prior
Emaxwas illustrated. The links found between the infection stimulus,knowledge. The automatic identification of additional non-linear
IL1A, NFKBIE andHLA-DMA were found to be stable for several model terms in general requires more independent experimental
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data in order to ensure a stable convergence of the algorithm tbudoit,S. and J. Fridlyand (2002) A prediction-based resampling method to estimate

a unique model structure. Due to the wide range of expression the number of clusters in a datas8enome Biol., 3, 0036.1-0036.21.

values Iogarithmized data are preferred for analysis. Modeling théad'l"M"]" Ruan,S., Bloyet,D. and Mazoyer,B. (2001) On the number of clusters and

- . . . ! the fuzziness index for unsupervised FCA application to BOLD fMRI time series.

non-logarithmized data instead of the log-ratios confirmed the three ;. Image Anal., 5, 55-67.

links between ‘infection’JL1 andNFKBIE shown as thick lines in Gasch,A.P. and Eisen,M.B. (2002) Exploring the conditional coregulation of yeast gene

Figure 4. expression through fuzzy k-means clusteri@gnome Biol., 3, Research0059.1—
The proposed Network Generation Method identifies differen- 005922

. . . . outte,C., Toft,P., Rostrup,E., Nielsen,F. and Hansen,L.K. (1999) On clustering fMRI
tial equation systems from measured time courses and availabf@ time seriesNeurolmage, 9, 298-310.

knowledge directly. Thus, it suggests qualitative biological rela-gyihke R, Hahn,D., Fahnert,B., Kroll.T. and WGIfi.S. (2000): Gene expression
tions between the considered genes. This data- and knowledge-drivendata mining by fuzzy C-means clustering and fuzzy rule generatino-
modeling allows to generate models that represent alternative hypo- ceedings of the 11th International Biotechnology Symposium, Berlin, Vol. 1,
theses for the underlying gene regulatory network. Incorporatin%app' 230-232.

. . . . stie,T., Tibshirani,R. and Friedman,J. (200hg Elements of Satistical Learning.
information about the measurement error (in terms of the maximum Springer, New York.

allowed submodel erroEmay and the available biological know-  Holter,N.S., Maritan,A., Cieplak,M., Fedoroff,N.V. and Banavar,J.R. (2001) Dynamic
ledge on immune response can help to select plausible network modeling of gene expression daloc. Natl Acad. Sci. USA, 98, 1693-1698.
structures. Given alternative network structures (differing e.g. jnldeker, T.E., Thorsson,V. and Karp,R.M. (2000) Discovery of regulatory interactions

whether STAT1 is activated by NEKBIE as shown in Figure 4 or ;h(;ggg:eperturbatlon: inference and experimental de$tgn. Symp. Biocomput., 5,

inhibited by CD59 as shown in Fig. 5) the corresponding dynamiciayfman,L. and Rousseeuw,P.J. (1980)ding Groupsin Data. Wiley, New York.
models can be used to design suitable perturbation experimentsm,D.J., Park,Y.W. and Park,D.J. (2001) A novel validity index for determination of
aimed at an optimal discrimination between these structures (Ideker the optimal number of clustert=ICE Trans. Inf. Syst., E84-D(2), 281-285.

etal., 2000). Having in mind the Iarge number of expressed geneé_’]u;gi;\;lé.r(ll\ligg)sjstemIdentlflcatlon—TheoryfortheUser. Prentice Hall, Upper Saddle
the sparseness of genetic networks and the limitations of today’s b'%'olsne;s,E., Mann,T., Castano,R. and Wold,B. (2000) From coexpression to core-
logical knowledge, the present study has shown that the concerted gulation: an approach to inferring transcriptional regulation among gene classes
application of optimized clustering methods, data- and knowledge- from large-scale expression data. In Stolla,S.A., Leen,T.K. and Muller,K.R. (eds)
driven reverse engineering and experimental planning is a viable and AdvancesinNeural Information Processing Systems 12. MIT Press, Cambridge, MA,
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