
IEICE TRANS. INF. & SYST., VOL. E00–D, NO. 0 0000
1

PAPER
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Using Wavelet Coefficients
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SUMMARY Recognition of specified wave patterns in one-
dimensional signals is an important task in many application ar-
eas such as computer science, medical science, and geophysics.
Many researchers have tried to automate this task with various
techniques, recently the soft computing algorithms. This paper
proposes a new neuro-fuzzy recognition system for detecting one-
dimensional wave patterns using wavelet coefficients as features
of the signals and evolution strategy as the training algorithm of
the system. The neuro-fuzzy recognition system first trains the
wavelet coefficients of the training wave patterns and then evalu-
ates the degree of matching between test wave patterns and the
training wave patterns. This system was applied to picking first
arrival events in seismic data. Experimental results with three
seismic data showed that the system was very successful in terms
of learning speed and performances.
key words: Neuro-fuzzy, Pattern Recognition, Evolution Strat-

egy, Wavelets

1. Introduction

Recognition of specified wave patterns in one-
dimensional signals is one of the important tasks in
signal processing areas, such as voice recognition in
computer science, wave detection in medical science,
and event picking in geophysics. To automate this pro-
cess many methods have been introduced by many re-
searchers with various techniques, especially with soft
computing recently [1]–[9].

This paper proposes a new neuro-fuzzy approach
for detecting specified one-dimensional wave patterns.
Our neuro-fuzzy recognition system consists of three
main modules: a neuro-fuzzy decision module, an evo-
lution strategy learning module, and a wavelet feature
extraction module. The neuro-fuzzy decision module
that plays a major role in our system evaluates the de-
gree of matching between the test wave patterns and
the training wave patterns. Of course, the neuro-fuzzy
decision module must be trained with the training wave
patterns prior to the decisions. The neuro-fuzzy deci-
sion module has neural network structures and their
link weights between the input layer and hidden layer,
and hidden layer and output layer have fuzzy mem-
bership functions [10]. The evolution strategy learn-
ing module trains the neuro-fuzzy decision module by
optimizing the training parameters of the neuro-fuzzy
decision module. This training method prevents the
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neuro-fuzzy decision module from getting stuck at a
local optimum. Performances of recognition systems
greatly depend on which features are used. We have
used the wavelet coefficients, calculated by the wavelet
feature extraction module, as the features of the signals.

The overall application procedures of the neuro-
fuzzy recognition system are as follows; 1) defines the
training patterns, 2) normalizes the training patterns
and transforms into wavelet coefficients, 3) trains the
neuro-fuzzy decision module with the wavelet coeffi-
cients of training wave patterns, 4) finally, decides how
much the test patterns are matched to training wave
patterns by the neuro-fuzzy decision module.

We apply our system to picking the first arrival
events in seismic data. This picking process is a very
laborious and time consuming task in geophysics [7]–
[9]. McCormack et al. [7] and Veezhinathan et al. [8]
have used back-propagation neural networks (BPNN)
as processing algorithms. While McCormack et al. [7]
have used the seismic data itself as the features of the
data, Veezhinathan et al. [8] used four signal attributes
of the seismic data as features †. Thus, the method of
Veezhinathan et al. is faster in training than that of Mc-
Cormack et al. These two methods takes much time to
train because they used BPNN. Moreover, their meth-
ods can get stuck at a local optimum in training. Chu
and Mendel [9] introduced a new method using fuzzy
logic systems. Their method produced nearly the same
results as previous works in spite of fast training. This
method can also fall into a local optimum because they
used a back-propagation algorithm in training.

Our system was tested with three seismic data. Ex-
perimental results showed that our method was excel-
lent than previous methods in terms of learning speed
and recognition results. This paper is organized as fol-
lows. Section 2 describes the structure and operations
of our system. The picking first arrival events of seis-
mic data is described in section 3. In section 4, we show
the experimental results with discussions. This paper
concludes in section 5.

†The four signal attributes are the maximum amplitude,
mean power level, power ratio and envelope slope.
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2. Neuro-fuzzy Recognition System

Our neuro-fuzzy recognition system (NFRS) consists
of three main modules; a neuro-fuzzy decision mod-
ule (NFDM), an evolution strategy learning module
(ESLM), and a wavelet feature extraction module
(WFEM). Figure 1 shows the structure of NFRS. The
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Fig. 1 Structure of neuro-fuzzy recognition system (NFRS)

overall recognition sequences of the NFRS is given in
Algorithm 1. Each module has its own functions for

Algorithm 1 Operations of NFRS
// PP : population pool composed of N parents and N off-
springs//
// f : the fitness of the best individual//
// ft : fitness for terminating the training //

1 initialize each module and set training data
2 initialize NFDM
3 initialize ESLM
4 set training data and normalize
5 calculate wavelet coefficients of all normalized training

data
6 train the NFDM with ESLM
7 do

8 evaluate all N parents
9 mutate all N parents and generate N offsprings
10 evaluate all N offsprings and insert them to PP
11 select good N individuals from the PP and replace

them to parents
12 until f < ft

13 set the parameters of the best individual to NFDM
14 apply each test data to the NFDM and make a decision
15 read the test data and normalize
16 calculate wavelet coefficients of the normalized test data
17 input the wavelet coefficients to the NFDM
18 decide how much the test data is matched to the training

data

recognition processing. The NFDM as a major module
of the NFRS makes a decision how much the test wave

are matched to the training wave patterns. Of course,
the NFDM must be trained with the training wave pat-
terns prior to the decisions. The function of the ESLM
is to train the NFDM by optimizing the parameters of
the NFDM. The WFEM performs the wavelet trans-
forms and produces the wavelet coefficients, which is
used as the features of the waves. The wavelet coeffi-
cients represent the features of the waves in a multireso-
lution, shape decomposition fashion [11], [12]. Original
waves are successively decomposed into components of
lower resolution, while the high frequency components
are not analyzed any further [13]. By this multireso-
lution decomposition, final wavelet coefficients have an
average value of the waves at the lowest resolution, an
average value and a difference value at the 2nd lowest
resolution, and so on. As a result, the wavelet coeffi-
cients have the informations of the shape as well as fre-
quency of the waves in a multiresolution fashion [13].
Based on the above observation, we concluded that us-
ing wavelet coefficients as features of the waves for de-
tection of a specified wave are more useful than using
the raw waves or using other features extracted from
the raw waves. Moreover, the features can be enhanced
by weighting of the wavelet coefficients. For example,
denosing effects are achieved by weighting the high fre-
quency of the wavelet coefficients [14], [15].

For wavelet transforms, some wavelets such as
Haar, B-Spline, Coiflet, and Daubachie wavelets
are available [13], [15]. For the WFEM, we used
Daubachie’s order-4 wavelet because this wavelet shows
considerably good performance in denosing and com-
pression of data. We used the order-4 wavelet because
it was found from experiments that the performance of
our neuro-fuzzy system was decreased as the order of
Daubachie’s wavelet increase. This may be because as
the order of Daubachie’s wavelet, the local properties
of data are more and more destroyed.

The neural network structures of the NFDM are
composed of inputs, rules (in other words, hidden), and
output layers. We call the links between the inputs and
the rules layers input links and the links between the
rules and the outputs layers output links. Each link
of the input and the output has a weight represented
by one linguistic term (for example, NB (Negative Big),
NS (Negative Small), and so on) as a fuzzy membership
function. The input and output links represent condi-
tional and conclusion parts of fuzzy rules, respectively.
For example, let us consider a simple structure, which
has only two input nodes, x1 and x2; two rule nodes, h1

and h2; and one output node, y1. Let the input links
be Wi,j , i ∈ {x1, x2}, j ∈ {h1, h2} and output links
be Vj,k, j ∈ {h1, h2}, k ∈ {y1}. Let the weights of in-
put and output links be represented by three linguistic
terms: NB (Negative Big), ZO (Zero), and PB (Posi-
tive Big). If Wx1,h1

is NB, Wx2,h1
is ZO, and Vh1,y1

is
NB; Wx1,h2

is ZO, Wx2,h2
is PB, and Vh2,y1

is ZO, then
the input and output links represent the following two
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fuzzy rules.

r1 : if x1 is NB and x2 is ZO, then y1 is NB

r2 : if x1 is ZO and x2 is PB, then y1 is ZO

Operations of the NFRS are as follows. Input val-
ues are applied to input links (more specifically, linguis-
tic terms of input links). The matching rates between
input values and linguistic terms of input links are used
to generate the outputs of rule nodes. With the match-
ing rates from all input nodes, rule nodes do t − norm
operation and generate real values, which are used as
α − cut values for output links. These α − cut values
are applied to the linguistic terms of the output links.
Output nodes do t−conorm operation with the α−cut
linguistic terms. Since the output of t − conorm oper-
ation is fuzzy value, the output nodes do defuzzifica-
tion for generating crisp values. In our experiments, we
used minimum and maximum operations as t − norm
and t − conorm operations, respectively. The simple
minimum and maximum operations have been widely
used in fuzzy reasoning.

With the simple neuro-fuzzy structure, previously
mentioned in this section, we describe the neuro-fuzzy
operations in detail. Let membership functions of the
linguistic terms of an input link ij and an output link
jk be µij(·) and µjk(·), respectively. Then the outputs
of rule nodes are given as:

ho
1 = min{µx1,h1

(x1), µx2,h1
(x2)} (1)

ho
2 = min{µx1,h2

(x1), µx2,h2
(x2)}, (2)

where ho
1 and ho

2 are outputs of the nodes h1 and h2,
respectively. As described before, these values are used
as α − cut for output links.

The membership functions of linguistic terms of
output links are cut according to the α − cut val-
ues. With these cutting membership functions, output
nodes do the max operation and do defuzzification with
the result of max operation. For defuzzification, we
used level grading defuzzification method [16]. This de-
fuzzification is useful for the NFRS because this method
is effective where linguistic terms are not equally dis-
tributed. Initially, the linguistic terms of the NFRS are
equally distributed, but they are different each other
after training. Since this defuzzification incorporates
the max operation into the defuzzification [16], output
nodes do only this defuzzification without max opera-
tion.

This defuzzification [16] is defined as:

yo
1 =

∑2
p=1 µ−1

hp,y1
(1) mc(h

o
p)

∑2
p=1 mc(ho

p)
, (3)

where yo
1 is the output of node y1 and mc(·) is the mea-

sure of certainty. In [16], the measure of certainty is
defined as:

mc(α) =
α

µ−1

Ã
(α)max − µ−1

Ã
(α)min + 1

, (4)

where α is a α − cut value, Ã is a linguistic term, and
µ−1

Ã
(α)max and µ−1

Ã
(α)min are maximum and minimum

values of the function µ−1

Ã
(α), respectively. Finally, the

outputs of the NFRS is given as:

yo
1 =

∑2
p=1

µ−1

hp,y1
(1) ho

p

µ−1

hp,y1
(ho

p)max−µ−1

hp,y1
(ho

p)min+1

∑2
p=1

ho
p

µ−1

hp,y1
(ho

p)max−µ−1

hp,y1
(ho

p)min+1

. (5)

The performance of a neuro-fuzzy system is
strongly dependent on the number of hidden nodes (in
other words, the number of fuzzy rules). If the num-
ber of hidden nodes is too small, then training time
will be short but the training can be poor by under fit-
ting. Contrarily, if the number of nodes is too large,
then training can be good but the training time will be
large. In order to automatically decide the number of
fuzzy rules, we devised an algorithm that is described
in Algorithm 2. In this algorithm, we assume that lin-

Algorithm 2 Setting of the number of rules
// rj : jth rule //
// k : the number of generated rules //
// ti : ith training data //
// N : the total number of training data //
// mi,j : matching rate between ti and rj//
// md : matching decision value//
// M(·, ·) : matching function //
// R(tj) : rule generation function with training data tj//

1 R(t1) ⊲ make first rule for first trainig data

2 k ← 1
3 for i = 2 to N ⊲ test for each training data

4 for j = 1 to k ⊲ test for each generated rule

5 mi,j = M(ti, rj)
6 end for

7 If max(mi,1, . . . , mi,k) < md then

8 k ← k + 1
9 R(ti) ⊲ generate kth rule rk

10 end if

11 end for

gustic terms are equally distributed within the range of
each input and output. With the first training data, the
first rule is generated as follows. Let the first training
data be given as t1 = (x11, x21, y11) and the member-
ship functions of three lingustic terms be represented
as µNB(·), µZO(·), and µPB(·), then the first fuzzy rule
r1 are represented as

Wx1,h1
= arg max{µNB(x11), µZO(x11), µPB(x11)}

Wx2,h1
= arg max{µNB(x21), µZO(x21), µPB(x21)}

Vh1,y1
= arg max{µNB(y11), µZO(y11), µPB(y11)}.

For the other training data, a new fuzzy rule based on
the matching rate with previous rules may or may not
be generated. In Algorithm 2, the matching function
M(·, ·) calculates the matching rate between a training
data and the generated rule. Let, for example, the sec-
ond training data be given t2 = (x12, x22, y12), then
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the matching rate m21 is calculated as M(t2, r1) =
min{µWx1,h1

(x12), µWx2,h1
(x22), µVh1,y1

(y12)}. If the

m21 is less than the matching decision value md, then
a new rule is generated. Otherwise, no new rule is
generated for the second training data and third train-
ing data will be processed. If the number of generated
rules is greater than one, then the maximum value of all
matching rates must be compared to the md. From this
algorithm, we can get fuzzy rules as well as the number
of fuzzy rules. In some cases, these fuzzy rules can be
used as initial fuzzy rules; however, using these rules
may sometimes make ESLM fall into a local optimum.
We used the algorithm only for getting the number of
fuzzy rules in this paper.

The NFDM must be trained by a learning algo-
rithm before it makes a decision. We used the evolu-
tion strategy as learning method of the NFDM. Figure
1 shows the overall block diagram of the ESLM. In order
to apply evolution strategy, the optimized parameters
and the format of individuals must be defined first. The
optimized parameters are:

• linguistic terms of the weights of input and output
links (in other words, rules)

• center and standard deviations of the linguistic
terms †.

Those parameters are embedded into the format of in-
dividuals. With the simple structure described above,
the format of individuals is depicted in Figure 2. The
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ZO NB NB PB PB PB(χ,σ) (χ,σ) (χ,σ) (χ,σ) (χ,σ) (χ,σ) (χ,σ) (χ,σ) (χ,σ)

Population Pool

Fig. 2 Individual representation in population pool

linguistic terms in Figure 2 indicate the center and devi-

†We used bell-shaped fuzzy sets as each linguistic term.

ation (χ, σ) of each linguistic term of all inputs and out-
puts. Initially, the centers and deviations (χ, σ) of all
individuals are distributed uniformly. Thus, the centers
and deviations in same linguistic term have same initial
values. During the processing of learning, these values
of each individual are updated according to evolution
processing. Therefore, although two inputs have same
linguistic term, the centers and deviations of those two
inputs may be different from each other after training.
While the values of linguistic terms of all individuals
have real number and are equally distributed initially,
the rules of all individuals have integer values and are
randomly set within the number of linguistic terms. For
example, if linguistic terms NB, ZO, and PB are repre-
sented as 0, 1, and 2, respectively, then the rules are set
to a random integer number from 0 to 2. As we already
mentioned before, we did not use the fuzzy rules gener-
ated by the Algorithm 2 as initial fuzzy rules because
we observed from experiments that using the generated
fuzzy rules as initial fuzzy rules made ESLM fall into a
local optimum as we expected.

The ESLM keeps 2N individuals (N for parents,
N for offsprings) in population pool during run. The
number N , of course, must be set by users prior to run.
The ESLM evaluates the fitness of each individual in
the population pool. Algorithm 3 shows the evaluation
procedure of the ESLM. To evaluate the fitness of each

Algorithm 3 Evaluation procedure
// N : the number of training data //
// P : the number of individuals //
// O : the number of outputs of NFDM //
// NFDMi : NFDM whose links are set by ith individual //
// ok

j
: kth actual output of NFDMi when jth training data

are applied//
// tk

j
: kth target output of jth training data //

// ei : total sum square error of ith individual//
// fi : fitness of ith individual //

1 for i = 1 to P
2 set NFDMi

3 ei ← 0
4 for j=1 to N
5 apply the wavelet coefficients of jth normalized train-

ing data to the NFDMi

6 measure the actual output oj of NFDMi

7 calculate error, ej = 1

2

∑O

k=1
(tk

j
− ok

j
)2

8 end for

9 obtain the mean square error of ith individual, ei =∑N

j=1
ej/N

10 set the fitness of ith fitness to fi = 1

1+ei

11 end for

individual, the ESLM feeds inputs of the wavelet coeffi-
cients of a normalized training data to the NFDM, and
calculates the errors between actual outputs of NFDM
and target outputs of the training data. A mean square
error (MSE) for the individual is calculated from the er-
rors for all training data. This mean square error is used
for calculating the fitness of the individual. Finally, the
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fitness of ith individual is given by:

fi =
1

1 + ei

=
1

1 + 1/2N
∑N

j=1

∑O
k=1(t

k
j − ok

j )2
.(6)

From the equation 6, it is obvious that the maximum
fitness is one. As shown in Algorithm 1, after evaluation
the individuals of parents are mutated with Gaussian
noise with zero mean and constant standard deviation
to generate offsprings. The ESLM evaluates the fitness
of the offsprings and rearranges the parents and off-
springs in descending order of the fitness to select next
generations. If the best individual, which is always at
the first in population pool, has MSE less than a pre-
defined error ǫ, then the training is finished. Since we
used the MSE as a parameter of the fitness function,
the termination condition of training can also be ex-
posed by the terminating fitness of the training. i.e.,
ft = 1

1+ǫ
.

After training, the parameters of the best indi-
vidual is set to NFDM. The NFDM estimates match-
ing rates between test patterns and training patterns
by fuzzy reasoning. There are many reasoning meth-
ods. We have used the max-min inference and the level
grading defuzzification method [16]. Therefore, the rule
nodes of our NFDM play a role of min-processing and
output nodes play a role of max-processing †. The fuzzy
values of output nodes are converted to crisp values (in
other words, matching rates) by level grading defuzzi-
fication. The NFRS can use these matching rates for
various purposes dependent on application areas.

3. Picking First Arrival Events

In this paper, the NFRS is applied to picking the first
arrival events in seismic data. This process has been
known as a very tedious and time consuming task in
geophysics because the amount of seismic data is usu-
ally large and the seismic data contains a lot of noise.
In order to automate this processing, some researchers
have devised algorithms based on the artificial intelli-
gence techniques, such as neural networks and fuzzy
logic [7]–[9].

McCormack et al. [7] applied a back-propagation
neural network (BPNN) approach to the recognition.
They used a two-layer network containing close to 5,000
input neurons and two output neurons. They repre-
sented seismic data as binary image that is a 2-D im-
age with only two grey levels (0 and 1). After training
using the binary image, BPNN decides the first arrival
events. Since the number of input nodes are too large,
their method needs huge training time. Veezhinathan
et al. [8] proposed a neural network based recognition
method with four signal attributes of the seismic data

†The min-processing and max-processing can be re-
garded as activation functions in neural networks.

as features. Their method was faster in training neu-
ral networks than that of McCormack et al. [7] because
they used only four signal attributes, instead of the data
itself. Using fuzzy logic systems, Chu and Mendel [9]
introduced a new method for the picking first arrivals.
Their systems called back-propagation fuzzy logic sys-
tems (BPFLS) were trained by updating parameters
such as input and output regional centers of member-
ship functions with back-propagation of errors. They
used four signal attributes proposed by McCormack et
al. [7] and another new attribute called distance to the
guiding function as features. The fifth attribute is a
piecewise linear function with four points that are se-
lected by human as first arrival events. Their method
produced nearly the same results as the BPNN with
faster training. These methods can get stuck at a local
optimum because they employed the back-propagation
algorithm.

In previous works, a training pattern is composed
of three peaks whose center peak was first arrival and
the others are not. Since the first and third peaks in-
clude the informations of no first arrival patterns, there
are no specific training patterns for no first arrival ones.
In their methods, as a result, the output values of all
training patterns are one. On the other hand, we used
two types of training patterns. One is for first arrival
patterns and the other is for no first arrival patterns.
The training patterns for first arrival ones consist of
only one peak that is first arrival. While the train-
ing patterns for first arrival ones are given by a user,
the training patterns for no first arrival ones are auto-
matically generated by shifting the start and end ar-
ray index of the first arrival peak to upward or down-
ward. Of course, if the inputs of a training pattern
are first arrival, then the output value of the training
pattern is given as one. Otherwise, the output value
is given as zero. For simplicity, we call the training
patterns whose output values are one one output train-
ing patterns (OOTPs) and those whose output values
are zero zero output training patterns(ZOTPs), respec-
tively. The shifting values and the number of ZOTPs
per one OOTP are a user parameter. Training patterns
are represented as training windows in seismic traces.
Since the first arrival events occur within specific dura-
tion in traces according to the minimum and maximum
speed of seismic wave, the NFRS scans only within the
specific duration (we call this duration searching win-
dows in traces). The NFRS evaluates the matching
rates of test patterns (we call the test patterns testing
windows in traces) one by one by shifting one array in-
dex from the start array index to the end array index
of the searching window of a trace. Finally, the NFRS
selects the test pattern with a maximum matching rate
as a first arrival pattern for a trace. In figure 3, the
numbers of testing windows for the trace 3 are some
examples of matching rates. Figure 3 shows the train-
ing windows, searching windows, and testing windows.
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In Figure 3, only some testing windows are depicted

training
window
(output 1)

searching
window

training
window
(output 0)

testing
window

0.011785
0.000234
0.009823

0.020045
0.876634
0.123456

Fig. 3 Training window, searching windows, and testing win-
dows

for simplicity. The number of ZOTPs per one OOTP
is four, two of them are upward and two of them are
downward.

4. Experimental Results

Our system was tested with three seismic records, the
first one is relatively low noise and the others are con-
siderably noisy. Figure 4 (a) and (b) show the two
seismic records for test. Table 1 shows the parame-

Table 1 Parameters of NFRS for test 1 and 2

Parameters Values

# of training data 15 (3: OOTPs, 12: ZOTPs)

# of linguistic terms 5 (NB, NS, ZO, PS, PB)

# of rules 15
ǫ 0.001

# of individuals 20

Mutation individuals : σ = (max-min) * 0.02
rules : σ = 0.5

ters of NFRS for test. The number of training data is
set to 15, three of them are OOTPs and the others are
ZOTPs. The number of linguistic terms is 5 and the
number of rules are the same as that of training data.
The training of NFDM by ESLM is finished when the
MSE of best individual is below 0.00001. The num-
ber of individuals of ESLM is set to 20. The standard
deviations for mutation of parents in ESLM are set to
(max-min) * 0.02 for centers and deviations of bell-type

0

0.01

0.02

0.03

0.04

0.05

0.06

745 750 755 760 765

(a)

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

(b)

Fig. 4 Seismic records for (a) test 1 and (b) test 2
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membership functions † and set to 0.5 for rules. There-
fore, offsprings are mutated by adding Gaussian noise
with zero mean and the standard deviation.

Table 2 shows the training data and searching win-
dows for test 1 and 2. In Table 2, the ’#’ means trace

Table 2 Training data and searching windows (time unit:
sec.)

OOTPs test 1 test 2
# time # time

first 745 start : 0.006 1 start : 0.03464
end : 0.009 end : 0.04464

second 755 start : 0.006 22 start : 0.004
end : 0.009 end : 0.014

third 768 start : 0.008 56 start : 0.0367
end : 0.011 end : 0.0467

searching length 0.003 0.03

sequence numbers selected by users, the start and end
are the beginning and end of the training windows, and
the start time of searching windows is the same as that
of training windows and the end time of searching win-
dows is calculated as start time plus searching length.
For example, the start time of a searching window at
the first trace of test 2 is 0.03464 and the end time
of the searching window is 0.06464 (0.03464 + 0.03).
With three searching windows at three training traces,
the NFRS interpolates the searching windows at each
trace.

We select three OOTPs, which are located at first,
middle, and the last traces in the records by giving
the start and end of each training windows. The four
ZOTPs at each training trace are automatically selected
by the NFRS (the shifting array value is one). All train-
ing patterns are first normalized and then transformed
to wavelet coefficients by WFEM to extract features.
After training, the NFRS decides a first arrival pattern
by observing the maximum output value in a searching
window.

The ESLM finished about 200 ∼ 300 generations
for test 1 and about 1000 ∼ 3000 generations for test 2.
The ESLM took few minutes in training for test 1 and
about ten minutes for test 2 on Pentium III PC with
Linux OS. Figure 5 (a) and (b) show the recognition
results for test 1 and test 2, respectively. As shown in
the results, the recognition ability of NFRS is somewhat
remarkable. However, the NFRS sometimes finds incor-
rect first arrival events. This is caused by two factors.
First, the shapes of training waves are somewhat differ-
ent each other. Second, in some traces neighbor waves
of the first arrival waves are more similar to the train-
ing waves. Although the NFRS almost finds correct
first arrival events in the traces that contain training
waves, it fails to find correct events in a few cases. We
think that this may be caused by incomplete learning

†The max and min indicate the maximum and minimum
values of each input and output, respectively.

(a)

(b)

Fig. 5 Recognition results for (a) test 1 and (b) test 2
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as well as the above two factors. In test 3, we used a
user friend GUI program developed by our team. With
this program, users can set or show the training win-
dows, searching windows and can examine and edit the
picking results. The parameters of NFRS for test 3 are
the same as those for test 1 and 2 (see Table 1) except
for the number of training data and rules. In test 3, the
number of OOTPs are not restricted to 3 and training
traces are located at any traces. Users can set any num-
ber of OOTPs in any traces. The number of OOTPs
in test 3 is 5 and the ZOTPs per one OOTP is 2 (the
shifting array value is one). Therefore, the number of
training patterns is 15 (5 + 2 ∗ 5). In test 3, the num-
ber of rules are decided by Algorithm 2. The number
of rules obtained by the algorithm is 15 with the value
of md = 0.5. That is, the number of rules is the same
as that of training patterns. We observed that the md

increases, the number of rules also increases. It is nat-
ural by intuition. In case that the number of training
patterns is large, the algorithm will be useful to reduce
the hidden nodes of NFDM.

Fig. 6 Seismic record for test 3

Figure 6 shows the seismic record for test 3. Fig-
ure 7 shows the training windows and searching win-
dows we selected. In Figure 7, the shaded area indi-
cates the searching windows and four rectangular areas
represent training windows. Unlike the case in test 1
and 2, the length of searching windows was given large
compared to that of training windows. The picking re-
sults is shown in Figure 8. Although the NFRS failed to

Fig. 7 Training windows and searching windows for test 3

Fig. 8 Recognition result of test 3
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pick in traces 31, 33, 36, and 41, the picking results are
relatively good. Note that the picked wave patterns in
the failed traces are very similar to the training wave
patterns. Moreover, the other patterns on the failed
traces are somewhat different from the training wave
patterns. This problem may be overcame by a post
processing algorithm which utilizes the training win-
dows and the picked values of neighbor traces.

5. Conclusion

In this paper, we proposed a neuro-fuzzy system for
recognizing specified wave patterns. We used wavelet
coefficients of data as features and evolution strategy as
learning algorithm of the system. This learning method
can avoid for the system to get stuck at a local optimum
that is inherent in conventional back-propagation algo-
rithms. Moreover, the learning speed of this method
is considerably fast. We applied our system to picking
the first arrival events in seismic data. The picking pro-
cess has been well known as a very difficult and time
consuming process in geophysics. Experimental results
with three seismic records showed that the performance
of our system was better than those of previous ones.
As further works, we will devise a post processing algo-
rithm for improving the performance.
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