NEURAL NETWORKS:
Basics using MATLAB

Neural Network Toolbox

By
Heikki N. Koivo

©
2008

Heikki Koivo @ February 1, 2008 -2—

Neural networks consist of a large class of different architectures. In many
cases, the issue is approximating a static nonlinear, mapping f (x) with a

neural network fy, (x), where xe R*.

The most useful neural networks in function approximation are Multilayer
Layer Perceptron (MLP) and Radial Basis Function (RBF) networks. Here we
concentrate on MLP networks.

A MLP consists of an input layer, several hidden layers, and an output layer.
Node i, also called aneuron, in a MLP network is shown in Fig. 1. It includes
asummer and a nonlinear activation function g.

Fig. 1. Single node in a MLP network.

The inputs x,, k=1,...,K to the neuron are multiplied by weights w, and
summed up together with the constant bias termé . The resulting n, is the

input to the activation function g. The activation function was originally
chosen to be arelay function, but for mathematical convenience a hyberbolic
tangent (tanh) or a sigmoid function are most commonly used. Hyberbolic
tangent is defined as

tanh() =1 ®

The output of node i becomes

Y=g =g[iwjixj+6’ij 2

Connecting several nodesin parallel and series, aMLP network isformed. A
typical network is shownin Fig. 2.

Input layer Hidden layer Output layer

Fig. 2. A multilayer perceptron network with one hidden layer. Here the same
activation function g is used in both layers. The superscript of
n, @, or wrefersto the layer, first or second.

Theoutput y,, i =12, of the MLP network becomes

3 3 K
yi=g(Wﬁg(n})+95j=g(ZWﬁQ(ZW&jXﬁé’?jwfj (3)
J j=1 k=1

1

From (3) we can conclude that a MLP network is a nonlinear parameterized
map from input space xe R to output space ye R™(here m = 3). The
parameters are the weights w/, and the biases 6. Activation functions g are
usually assumed to be the same in each layer and known in advance. In the
figure the same activation function g isused in all layers.

Given input-output data (X, Y;), i =1,...,N, finding the best MLP network is
formulated as a data fitting problem. The parameters to be determined are

k
(o] 6%).
The procedure goes as follows. First the designer has to fix the structure of the
MLP network architecture: the number of hidden layers and neurons (nodes)
in each layer. The activation functions for each layer are also chosen at this
stage, that is, they are assumed to be known. The unknown parameters to be

estimated are the weights and biases, (w6}) .

i

Many algorithms exist for determining the network parameters. In neural
network literature the algorithms are called learning or teaching algorithms, in
system identification they belong to parameter estimation algorithms. The
most well-known are back-propagation and Levenberg-Marquardt algorithms.
Back-propagation is a gradient based algorithm, which has many variants.
Levenberg-Marquardt is usually more efficient, but needs more computer
memory. Here we will concentrate only on using the algorithms.

Summarizing the procedure of teaching algorithms for multilayer perceptron
networks:

a. The structure of the network isfirst defined. In the network,
activation functions are chosen and the network parameters, weights
and biases, areinitialized.

b. The parameters associated with the training algorithm like error
goal, maximum number of epochs (iterations), etc, are defined.

c. Thetraining algorithm s called.

d. After the neural network has been determined, the result isfirst
tested by simulating the output of the neural network with the
measured input data. Thisiscompared with the measured outputs.
Final validation must be carried out with independent data.

The MATLAB commands used in the procedure are newff, train and sim.

The MATLAB command newff generates a MLPN neural network, which is
called net.

net = newff(PR ,[SLS2..SNI]{ TFLTF2.TFNI}, BTE)| (4)

minmax sizeof theithlayer activation function of ith layer ~ training
values agorithm

Theinputsin (4) are

R = Number of elementsin input vector

xR = Rx2 matrix of min and max values for R input elements,
S = Number of neurons (size) intheith layer,i = 1,...,NI

NI = Number of layers

TFi = Activation (or transfer function) of theith layer, default = ‘tansig,
BTF = Network training function, default = ‘trainlm’

InFig.2R=K,S1=3, 2= 2, Nl =2 and TFi =g.

The default algorithm of command newff is Levenberg-Marquardt, trainim.
Default parameter values for the algorithms are assumed and are hidden from
the user. They need not be adjusted in the first trials. Initia values of the
parameters are automatically generated by the command. Observe that their
generation is random and therefore the answer might be different if the
algorithm is repeated.

After initializing the network, the network training is originated using train
command. The resulting MLP network is called net1.

netl= train(net, x , y))
initial measured o
MLP input vector et wattor

The arguments are: net, the initial MLP network generated by newff, X,
measured input vector of dimension K and y measured output vector of
dimension m.

To test how well the resulting MLP netl approximates the data, sim command
is applied. The measured output isy. The output of the MLP network is
simulated with sim command and called ytest.

ytest = sim(netl, x) ©)

final Tnput
MLP vector

The measured output y can now be compared with the output of the MLP
network ytest to see how good the result is by computing the error difference e
= y — ytest at each measured point. The final validation must be done with
independent data.

In the following a number of examples are covered, where MATLAB Neural
Network Toolbox is used to learn the parameters in the network, when input-
output datais available.

NEURAL NETWORKS- EXERCISES
WITH MATLAB AND SIMULINK

BASIC FLOW DIAGRAM

CREATE A NETWORK OBJECT
AND INITIALIZEIT

Use command newff*

TRAIN THE NETWORK

Use command train
(batch training)

TO COMPARE RESULTSCOMPUTE
THE OUTPUT OF THE NETWORK
WITH TRAINING DATA AND
VALIDATION DATA

Use command sim

*The command newff both defines the network (type of architecture, size and
type of training algorithm to be used). It a'so automatically initializes the
network. The last two letters in the command newff indicate the type of neural
network in question: feedforward network. For radial basis function networks
newrb and for Kohonen's Self-Organizing Map (SOM) newsom are used.

Before starting with the solved exercises, it isagood ideato study MATLAB Neura
Network Toolbox demos. Type demo on MATLAB Command side and the MATLAB
Demos window opens. Choose Neural Networks under Toolboxes and study the
different windows.

4 |MATLAB Demo Window H=] E

TLAB Demos

+MATLAE - Meural Metworks -
-Toolboxes —
Carmmunications The Heural Mebwark Toaolbox includes marny
Symbolic kMath kinds of powerful netwarks for zolving
Fartial Differential E quatic problems including:
Fuzzy Logic - function approgimatian, modeling,
WPC Tools - zighal procezsing and prediction
Meural Metwarks - clazsification, and clustering.
Mu-dnalyziz and Synthes ;I
Signal Processing
Optimization - - "
Sustem |dentification Simple FIELION and trar‘u:s:hzer funchions
Control System Meuran with vector input
Sirnulink. Decizion Boundaries
Mew in Sirnulink 2 Perceptron learming rule.
Mew in Sirulink 2 — Clazzification with a 2-input perceptron
Simple models Outlier input wectors
Complex models p= E.Drmeillzed perceptrél:in e
1 o [t =
Cloze Run Simple neuron and ...

EXAMPLE 1: Consider humps function in MATLAB. It is given by
y=1./((x-3)22+.01) + 1./ ((x-.9).2 +.04) - 6;

but in MATLAB can be called by humps. Here we like to seeif it is possible to find a neural network
to fit the data generated by humps-function between [0,2].

a) Fit amultilayer perceptron network on the data. Try different network sizes and different teaching
algorithms.
b) Repeat the exercise with radial basis function networks.

SOLUTION: To obtain the data use the following commands
x = 0:.05:2; y=humps(x);

P=x; T=y

Plot the data

plot(P,T,'x)
grid; xlabel(‘time (9)'); ylabel(‘output'); title('humps function’)

+# Figure Ho_ 1 O] =]
File Edit ‘Window Help
hurnps function
100

B ------ oo

B ----- -

AD [~ mmmede e -

output

| —
EEUM MK K n
1

1] R PO L
1

-20 .
a 0.5 1 1.5 2

tirme (s

The teaching algorithms for multilayer per ceptron networks have the following structure:

e. Definethe structure of the network. Choose activation functions and initialize the
neural network parameters, weights and biases, either providing them yourself or
using initializing routines.

MATLAB command for MLPN initialization is newff.

f. Define the parameters associated with the training algorithm like error goal,
maximum number of epochs (iterations), etc.

g. Cadl thettraining algorithm. In MATLAB the command istrain.

% DESGN THE NETWORK

% - - - =—=—=—=CT

%First try a simple one — feedforward (multilayer perceptron) network
net=newff([0 2], [5,1], {'tansig','purelin’},'traingd’);

% Here newff defines feedforward network architecture.

% Thefirst argument [0 2] defines the range of the input and initializes the network parameters.
% The second argument the structure of the network. There are two layers.

% 5 isthe number of the nodesin the first hidden layer,

% 1isthe number of nodesin the output layer,

% Next the activation functionsin the layers are defined.

% In thefirst hidden layer there are 5 tansig functions.

% Inthe output layer thereis 1 linear function.

% ‘learngd’ defines the basic learning scheme — gradient method

% Define learning parameters

net.trainParam.show = 50; % The result is shown at every 50" iteration (epoch)
net.trainParam.Ir = 0.05; % Learning rate used in some gradient schemes
net.trainParam.epochs =1000; % Max number of iterations
net.trainParam.goal = 1e-3; % Error tolerance; stopping criterion

%Train network
netl = train(net, P, T); % Iterates gradient type of loop

% Resulting network is strored in netl
TRAINGD, Epoch 0/1000, MSE 765.048/0.001, Gradient 69.9945/1e-010

TRAINGD, Epoch 1000/1000, MSE 28.8037/0.001, Gradient 33.0933/1e-010
TRAINGD, Maximum epoch reached, performance goal was not met.

The goadl is till far away after 1000 iterations (epochs).

REMARK 1: If you cannot observe exactly the same numbers or the same performance, thisis
not surprising. Thereason isthat newff uses random number generator in creating the initial
valuesfor the network weights. Thereforetheinitial network will be different even when exactly

the same commands ar e used.

Convergence is shown below.

| Training with TRAINGD _ O] x|
Eile Edit Tools *window Help
DEeEdae "A A/ @O

Ferformance is 28.8583, Goal is 0.001
1':' E T T T T

Training-Blue Goal-Black
=

o 200 400 GO0 500 1000
1000 Epochs

It isalso clear that even if moreiterations will be performed, no improvement isin store. Let us still
check how the neural network approximation looks like.

% Simulate how good a result is achieved: Input is the same input vector P.
% Output is the output of the neural network, which should be compared with output data

a= sim(net1,P);

% Plot result and compare
plot(P,a-T, P,T); grid;

+ 'Figure Mo. 1 O] x|
File Edt Toolz *Window Help

D& "A A/ 2o
100

a0} --

a0r--f---

i B E e

BO-----F- A

r—-—-" " 7T~ ~"~"T~-~-="731-~-=7°-~7~17

(

=
]
m
L
S
m
o]

10

Thefit is quite bad, especially in the beginning. What is there to do? Two things are apparent. With all
neural network problems we face the question of determining the reasonable, if not optimum, size of
the network. Let us make the size of the network bigger. This bringsin aso more network parameters,
so we have to keep in mind that there are more data points than network parameters. The other thing,
which could be done, is to improve the training algorithm performance or even change the algorithm.
WE'll return to this question shortly.

Increase the size of the network: Use 20 nodes in the first hidden layer.
net=newff([0 2], [20,1], {"tansig','purelin'},'traingd');
Otherwise apply the same algorithm parameters and start the training process.

net.trainParam.show = 50; % The result is shown at every 50" iteration (epoch)
net.trainParam.Ir = 0.05; % Learning rate used in some gradient schemes
net.trainParam.epochs =1000; % Max number of iterations
net.trainParam.goal = 1e-3; % Error tolerance; stopping criterion

%Train network
netl = train(net, P, T); % Iterates gradient type of loop

TRAINGD, Epoch 1000/1000, MSE 0.299398/0.001, Gradient 0.0927619/1e-010
TRAINGD, Maximum epoch reached, performance goal was not met.

The error goal of 0.001 is not reached now either, but the situation has improved significantly.

| Training with TRAINGD _ O] x|

File Edt Toolz *Window Help

DEeda "A A/ ®eo
i Pedormance is 0.299398, Goal is 0.001
10 . . . r

10 1

10 1

Training-Blue Goal-Black
=]

0 200 400 ROD ai0 1000
1NN Frarhe

10

From the convergence curve we can deduce that there would still be a chance to improve the network
parameters by increasing the number of iterations (epochs). Since the backpropagation (gradient)
algorithm is known to be slow, we will try next a more efficient training algorithm.

Try Levenberg-Marquar dt —trainlm. Use also smaller size of network — 10 nodes in the first hidden
layer.

net=newff([0 2], [10,1], {"tansig','purelin'},'trainim');

11

%Define parameters
net.trainParam.show = 50;
net.trainParam.Ir = 0.05;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
%Train network

netl = trainim(net, P, T);

TRAINLM, Epoch 0/1000, MSE 830.784/0.001, Gradient 1978.34/1e-010

TRAINLM, Epoch 497/1000, MSE 0.000991445/0.001, Gradient 1.44764/1e-010
TRAINLM, Performance goal met.

The convergence is shown in the figure.

| Training with TRAINLM _ O] x|
File Edt Toolz *Window Help

DEeda "A A/ ®eo
Performance is 0.000991445, Goal is 0.001

Training-Blue Goal-Black

0 100 200 300 400
AQT Frnrhe

Performance is now according to the tolerance specification.

%S mulate result
a= sim(netl,P);

%0Plot the result and the error

plot(P,a-T,P,T)
xlabel ("Time (s)'); ylabel ('Output of network and error'); title("Humps function’)

12

| Training with TRAINLM _ O] x|
File Edit Toolz *window Help

loz@a@ xA /@50

Humps function

100

80

B0

411

20

Clutput of netwoark and errar

Tirna (o

Itisclear that L-M algorithm is significantly faster and preferable method to back-propagation.
Note that depending on the initialization the algorithm converges slower or faster.

There is aso a question about the fit: should all the dips and abnormalities be taken into account or are
they more result of poor, noisy data.

When the function isfairly flat, then multilayer perception network seems to have problems.
Try simulating with independent data.
x1=0:0.01:2; P1=x1;yl=humps(xl); T1=Vy1;
al= sm(netl,P1);
plot(P1,a-a1,P1,T1,P,T)
If in between the training data points are used, the error remains small and we cannot see very much
difference with the figure above.
Such datais called test data. Another observation could be that in the case of afairly flat area, neural
networks have more difficulty than with more varying data.
b) RADIAL BASISFUNCTION NETWORKS

Here we would like to find a function, which fits the 41 data points using aradial basis network.

A radial basis network is a network with two layers. It consists of a hidden layer of radial basis
neurons and an output layer of linear neurons.

Hereisatypical shape of aradia basis transfer function used by the hidden layer:
p=-3.13;

a = radbas(p);
plot(p,a)

13

| Training with TRAINLM _ O] x|
File Edit Toolz *window Help
D& A A/ 2P0
1
nar
0B
0.4
02F
I:I 1 1 1
-3 2 1 1] 1 2 3

The weights and biases of each neuron in the hidden layer define the position and width of aradial
basis function.

Each linear output neuron forms a weighted sum of these radial basis functions. With the correct
weight and bias values for each layer, and enough hidden neurons, aradial basis network can fit any
function with any desired accuracy.

We can use the function newrb to quickly create aradial basis network, which approximates the
function at these data points.

From MATLAB help command we have the following description of the algorithm.
Initially the RADBAS layer has no neurons. The following steps
are repeated until the network's mean squared error falls below GOAL.
1) The network is simulated
2) The input vector with the greatest error is found
3) A RADBAS neuron is added with weights equal to that vector.
4) The PURELIN layer weights are redesigned to minimize error.
Generate data as before

x = 0:.05:2; y=humps(x);
P=x; T=y;

The simplest form of newrb command is
netl = newrb(P,T);

For humps the network training leads to singularity and therefore difficultiesin training.

Simulate and plot the result

a= sim(netl,P);
plot(P,T-a,P,T)

14

+# 'Figure Mo. 1 M =] E3
Eile Edit Toolz *Window Help

DEeEE NA A/ | @20

100 . . :

80+

BO |

40+

20t

a

20

The plot shows that the network approximates humps but the error is quite large. The problem is that
the default values of the two parameters of the network are not very good. Default values are goal -
mean squared error goal = 0.0, spread - spread of radial basis functions = 1.0.

In our example choose goal = 0.02 and spread = 0.1.

goal=0.02; spread= 0.1;
netl = newrb(P,T,goal, spread);

Simulate and plot the result

a= sim(net1,P);
plot(P,T-a,P,T)

xlabel ("Time (s)'); ylabel ('Output of network and error');
title("Humps function approximation - radial basis function')

15

¥ 'Figure Mo. 1 M=l E3
Eile Edit Tools *window Help

IDEeEdae "A A/ ®eo
Humps tunction approximation - radial basis tunction
100 . .

80+

B0 |

40 ¢

20t

Cutput of network and errar

a

=20

This choice will lead to avery different end result as seen in the figure.

QUESTION: What is the significance of small value of spread. What about large?

The problem in the first case was too large a spread (default = 1.0), which will lead to too sparse a
solution. The learning algorithm requires matrix inversion and therefore the problem with singularity.
By better choice of spread parameter result is quite good.

Test also the other algorithms, which are related to radial base function or similar networks NEWRBE,
NEWGRNN, NEWPNN.

EXAMPLE 2. Consider a surface described by z= cos (X) sin (y) defined on a square
—2<Xx<L2-2<y<2.

a) Plot the surface z as afunction of x and y. Thisisademo functionin MATLAB, so you can aso find
it there.

b) Design a neural network, which will fit the data. Y ou should study different alternatives and test the
final result by studying the fitting error.

SOLUTION
Generate data

x=-2:025:2; y=-2:0.25:2,
z= cos(x)™*sin(y);

Draw the surface (here grid size of 0.1 has been used)

mesh(x,y,2)

xlabel('x axis); ylabel('y axis); Zabel('zaxis);
title('surface z= cos(x)sin(y)");
gi=input('Srike any key ...";

16

pause

+# Figure Ho. 1 _ O] x|
File Edit “Window Help
surface z = cos(x)sin(y)

1
1
1
1
T -
1
1

Store datain input matrix P and output vector T
P=[xyl; T=z

Use afairly small number of neuronsin the first layer, say 25, 17 in the output.
Initialize the network

net=newff([-2 2; -2 2], [25 17], {'tansig' 'purelin’},'trainim);
Apply Levenberg-Marquardt algorithm

%Define parameters

net.trainParam.show = 50;

net.trainParam.Ir = 0.05;

net.trainParam.epochs = 300;

net.trainParam.goal = 1e-3;

%Train network
netl = train(net, P, T);

gi=input('Srike any key ...");

TRAINLM, Epoch 0/300, MSE 9.12393/0.001, Gradient 684.818/1e-010
TRAINLM, Epoch 3/300, MSE 0.000865271/0.001, Gradient 5.47551/1e-010
TRAINLM, Performance goal met.

Plot how the error develops

17

| Training with TRAINLM _ O] x|
Eile Edit Tools *window Help
DEeEd&e "A A/ BLo
; Performance is 0.000865271, Goal is 0.001
10 T T T r ;
i
=
o
= 07 |
]
e
D 4%}
=
(1]
=
10" - - - - -
1] 0.5 1 1.5 2 25 3
3 Enochs

Simulate the response of the neural network and draw the corresponding surface

a= sim(net1,P);
mesh(x,y,a)

| Training with TRAINLM _ O] x|
File Edt Toolz *Window Help

IpsEE XA A/ 220

The result looks satisfactory, but a closer examination reveals that in certain areas the approximation is
not so good. This can be seen better by drawing the error surface.

18

% Error surface
mesh(x,y,a-2)
xlabel('x axis); ylabel('y axis); zZlabel(‘Error'); title('Error surface')

| Training with TRAINLM _ O] |
File Edit Toolz *Window Help

loz@a@ xA A/ @50

Ertar surface

r"’rH
- 1

o -

-
- 1 -

-

y axis - ¥ axis

gi=input('Srike any key to continue......");
% Maximum fitting error

Maxfiterror = max(max(z-a))
Maxfiterror = 0.1116

Depending on the computing power of your computer the error tolerance can be made stricter, say 10”.
The convergence now takes considerably more time and is shown below.

19

| Training with TRAINLM =] B
Eile Edit Tools *window Help

DEeEd&e "A A/ BLo

. Peformance is 9.41945e-007, Goal is 1e-005

10

Training-Blue Goal-Black

O 1 2 3 .| 5 5] 7
7 Enochs

Producing the simulated results gives the following results

| Training with TRAINLM

File Edt Toolz ‘Window Help

loz@a@ A/ @50

Approximated surface

R
1

-

Metwork otput

20

| Training with TRAINLM _[O] x|
Eile Edit Tools *window Help

IDEE&S NA A/ 2P0

Error surface

-

Error

"
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

EXAMPLE 3: Consider Bessel functions J,(t), which are solutions of the differential equation
t2'y+ty+ (t2 —az)y: 0.

Use backpropagation network to approximate first order Bessel function J; , =1, whent € [0,20].
a) Plot Ji(t).
b) Try different structures to for fitting. Start with atwo-layer network.
Y ou might also need different learning algorithms.

SOLUTION:

1. First generate the data.

MATLAB has Bessel functions as MATLAB functions.

t=0:0.1:20; y=bessel(1,t);

plot(t,y)

grid
xlabel('time in secs);ylabel(‘y'); title('First order bessel function’);

21

Figure No_ 1

File Edit ‘Window Help

0.6

i [=]

First arder bessel function

04f-f--

e - - -

02f----

0.4

1
1
1
1
1
1
_________ dococoooooo
1
1
1
]

e e e e =

o
1
1
1
1
1
]

10 15 20
time in secs

[T I o

2. Next try to fit a backpropagation network on the data. Try Levenberg-Marquardt.

P=t; T=y;
%Define network. First try a simple one
net=newff([0 20], [10,1], {'tansig','purelin'},'trainim);
%Define parameters
net.trainParam.show = 50;
net.trainParam.Ir = 0.05;
net.trainParam.epochs = 300;

net.trainParam.goal = le-3;

%Train network
netl = train(net, P, T);

TRAINLM, Epoch 0/300, MSE 11.2762/0.001, Gradient 1908.57/1e-010
TRAINLM, Epoch 3/300, MSE 0.000417953/0.001, Gradient 1.50709/1e-010
TRAINLM, Performance goal met.

Training with TRAINLM O] =|
File Edit *Window Help
Perfarmance is 0.000417953, Goal is 0.001

Training-Blue Goal-Black

2

1 5 2 25 a
3 Fanrhs

22

% Smulate result
a= sim(net1,P);

%Pl ot result and compare

plot(P,a,P,a-T)

xlabel('time in secs);ylabel ('Network output and error’);
title('First order bessel function'); grid

¥ Training with TRAINLM _ O] =]
Eile Edit ‘Window Help

First order bessel function
0.5

0.4

0.2

Metwork output and errar

time in spCS

Since the error isfairly significant, let’s reduce it by doubling the nodesin the first hidden layer to 20
and decreasing the error tolerance to 10,

Thetraining isover in 8 iterations

TRAINLM, Epoch 0/300, MSE 4.68232/0.0001, Gradient 1153.14/1e-010
TRAINLM, Epoch 8/300, MSE 2.85284e-005/0.0001, Gradient 0.782548/1e-010
TRAINLM, Performance goal met.

After plotting this results in the following figure.

23

¥ Training with TRAINLM _ O] =]
Eile Edit ‘Window Help
First order bessel function

0.6

0.4

0.2

Metwork output and errar

-0.2

-0.4

time in spCS

Theresult is considerably better, although it would still require improvement. Thisis |eft as further
exercise to the reader.

EXAMPLE 4: Study, if it is possible to find a neural network model, which produces the same
behavior as VVan der Pol equation.

X’+(x2 -Dx+x=0
or in state-space form

; 2
Xp =X (1-x{)-%
XZ = Xl

Use different initial functions.

Apply vector notation

x =f(X)
where
S MEICE fl(xl’Xﬁsza—xf)—xl}
Xz fo (%, %) X
SOLUTION:

First construct a Simulink model of Van der Pol system. It is shown below. Call it vdpol.

24

i wdpol =] E3

File Edit Simulation Format

-t
* il
e
L Procluctt
- - |—“ 1 1
| - T - o
[—» o< Ll ™™ >
Sum1
Corstant um Prodct Sum |rtsgrator | Integrstort To Workepaze
» ¥
To Workezpace

Recall that initial conditions can be defined by opening the integrators. For example the initial
condition x;(0) = 2 is given by opening the corresponding integrator.

i Integratorl E

— Integrator

Contitouz-time integration of the input zsignal

— Parameters
External rezet: | none j|
Initial condition source: internal j

Imitial condition;
2

[Limit output

|pper zaturation limit:
inf
Lower saturation lirnit:
-inf

™ Show saturation port
™ Show state port

Ahzolute tolerance:
auto

Apply I Fewert | Help | Cloze |

Useinitia condition x;(0) = 1, x»(0) = 1.

% Define the simulation parameters for Van der Pol equation
% The period of simulation: tfinal = 10 seconds;
tfinal = 10;

% Solve Van der Pol differential equation
[t,X] =sim('vdpol',tfinal);

% Plot the states as function of time

plot(t,x)

xlabel (‘time (secs)'); ylabel('states x1 and x2"); title("Van Der Pal'); grid
gi=input(Srike any key ...");

25

Training with TRAINLM M =]E3
Fle Edt “Window Help
“an Der Pol

states x1 and x2

time fsprsl

%Pl ot also the phase plane plot
plot(x(:,1),x(:,2)), title("Van Der Pal'),grid
gi=input(Strike any key ...");

Training with TRAINLM _ O] =]
File Edit “Window Help
“an Der Pol
2

% Now you have data for one trajectory, which you can use to teach a neural network
% Plot the data (solution). Observe that the output vector includes both

1.
3
]

t
X5

P
T
plot(P,T,'+");

title('Training Vectors);
xlabel ('Input Vector P");

ylabel('Target Vector T);
gi=input('Srike any key ...");

26

¥ Training with TRAINLM _ O] =]
Eile Edit ‘Window Help
Training “ectors
3 - . . .
2 +-t|_ +H-
g
A + o+ it
= ++ _|j-+ + + j
J o, ! + " i
3 + + * + + +
:3" I:I B + + -
T + * + T +
=g + + + gt +
sab &t s o
Th R
T + O
2l + g
ey +F
+
= s s s s
0 2 4 B g 10
Inaut “artnr P

% Define the learning algorithm parameters, radial basis function network chosen
net=newff([0 20], [10 2], {"'tansig','purelin'},'trainim);
%Define parameters

net.trainParam.show = 50;
net.trainParam.Ir = 0.05;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;

%Train network
netl = train(net, P, T);gi=input(" Srike any key...");

TRAINLM, Epoch 0/300, MSE 4.97149/0.001, Gradient 340.158/1e-010
TRAINLM, Epoch 50/300, MSE 0.0292219/0.001, Gradient 0.592274/1e-010
TRAINLM, Epoch 100/300, MSE 0.0220738/0.001, Gradient 0.777432/1e-010
TRAINLM, Epoch 150/300, MSE 0.0216339/0.001, Gradient 1.17908/1e-010
TRAINLM, Epoch 200/300, MSE 0.0215625/0.001, Gradient 0.644787/1e-010
TRAINLM, Epoch 250/300, MSE 0.0215245/0.001, Gradient 0.422469/1e-010
TRAINLM, Epoch 300/300, MSE 0.0215018/0.001, Gradient 0.315649/1e-010
TRAINLM, Maximum epoch reached, performance goal was not met.

27

+ Training with TRAIMLM _ O] =]
File Edit Window Help
1 Performance is 0.0215018, Goal is 0.001
10 T T T T r
=
o
™
=
2
o 10
=
e
=
.E
5 0%
'_
107
0 a0 100 150 200 250 300
MM Fonchs

The network structure is too simple, since convergence is not achieved. Let’'s see how close the
network solution is to the simulated solution.

%S mulate result
a= sim(netl,P);

%Pl ot the result and the error

plot(P,a,P,a-T)
gi=input('Srike any key...");

¥ Training with TRAINLM _ O] =]
Eile Edit ‘Window Help

3 - . . .

Theresult is not very good, so let’stry to improve it.

Using 20 nodes in the hidden layer gives a much better result.

28

4 Training with TRAINLM H=]E
Eile Edit ‘Window Help

Try to further improve the multilayer perceptron solution.
Use next radial basis function network with spread = 0.01.
net1=newrb(P,T,0.01);

%S mulate result
a= sim(netl,P);

%Pl ot the result and the error
plot(P,a-T,P,T)

Theresult is displayed in the following figure.

4 Training with TRAINLM Mmi=]E
File Edit “Window Help

29

The result is comparable with the previous one.

Try also other initial conditions. If x,(0) = 2, and another net isfitted, with exactly the same procedure,
the result is shown in the following figure.

4 'Figure Mo. 1 _ O] x|
Eile Edit Toolz indow Help

lDEsEa xA A/ 2P0

3 T T T T T T

2 n

1 n

1L]

0 1 2 3 4 g B 7 g 9 10

It is apparent that for anew initial condition, a new neural network is needed to approximate the result.
Thisis neither very economic nor practical procedure. In example 6, a more general procedureis
presented, which is often called hybrid model. The right-hand side of the state equation, or part of it, is
approximated with a neural network and the resulting, approximating state-space model is solved.

EXAMPLE 5. Solvelinear differential equation in the interval [0, 10].

X+ 0.7x+1.2x = u(t)

when u(t) isaunit step. The initial conditions are assumed to be zero. Assume also that the step takes

placeat t = 0s. (In Simulink the default valueis 1 s.). The output x(t) is your data.

Fit multilayer perceptron and radial basis function networks on the data and compare the result with

the original data. Add noise to the data and do the fit. Does neural network filter data?

SOLUTION: Set up the SIMULINK configuration for the system. Call it linearsec. In simulation use
fixed step, because then the number of simulation points remains in better control. If variable-step
methods are used, automatic step-size control usually generates more data points than you want.

[)linsec = _ O] =]
File Edit “iew Simulation Format Toolz
DS E& s+ =8B 22 » = | &
N 1 =
— R P — - -
- z s
Step = Scope
Integrator Integratord
zain
1.2}qi
aini
Ready |1 00z | |T=|:I.|:||:I ||:u:|e45 o

Go to MATLAB Command window. Simulate and plot the result.
[t1,x1] =sim(‘linsec',20);
plot(t1,x1(:,2))

xlabel(' tin secs);ylabel (‘output y'); title('Step response of a linear, second order systen);
grid

31

Figure No_ 1 _ O] x|
File Edit ‘window Help

otep response of a linear, second arder system
1.4

12f---------

T

output vy

.-

| S

T
1
1
1
1
r
1
1
1
1
-
1
1
1
-
1
1
1
1
-
1
1
1
1
-
1
1
1
1
L
1
1
1
1
1

02} f-------- oo om o menn-
5

10 1
tin secs

20

Now you have input-output data[t,y]. Proceed asin the previous examples. Here only radial basis
functions are used.

P=t1;
T=x1(:,2)",
plot(P,T,'r+");

title('Training Vectors);

xlabel ('Input Vector P");

ylabel('Target Vector T);

gi=input('Srike any key ...");

Number of simulation data points and size of the networks should be carefully considered.

Complete the exercise.

32

EXAMPLE 6: Simulate the hybrid system
X=—-X-f(X)

for different initial conditions. Function y = f(X) is has been measured and you must first fit a neural
network on the data. Use both backpropagation and radial basis function networks. The datais
generated using y=f(x)=sin(x).

-5.0000 0.9589
-4.6000 0.9937
-4.2000 0.8716
-3.8000 0.6119
-3.4000 0.2555
-3.0000 -0.1411
-2.6000 -0.5155
-2.2000 -0.8085
-1.8000 -0.9738
-1.4000 -0.9854
-1.0000 -0.8415
-0.6000 -0.5646
-0.2000 -0.1987
0.2000 0.1987
0.6000 0.5646
1.0000 0.8415
1.4000 0.9854
1.8000 0.9738
2.2000 0.8085
2.6000 0.5155
3.0000 0.1411
3.4000 -0.2555
3.8000 -0.6119
4.2000 -0.8716
4.6000 -0.9937
5.0000 -0.9589

+ 'Figure Mo. 1 O] x|
File Edt Toolz *Window Help

D& "A A/ 20

Monlinear mapping

1

o
i

q-F------

f)

=

Cutput vector y

-5 o

L A e

Instead of typing the data generate it with the following SIMULINK model shown below.

33

=] nonlindatal = =]

Eile Edit “iew Simulation Format Tools

MzEga 2alo 2 « | =

Clodk
+ ——P»| =inu) —#= nonlin
-5 +
Fen To Wotspace
Constant
S W
To Mrotspaced
Initializing 100 | T=0000 |oded5 4

When you use workspace blocks, choose Matrix Save format. Open To workspace block and choose
Matrix in the Menu and click OK. In thisway the datais available in Command side.

Block Parameters: To Workspacel |
— To'Workspace

Wnite input bo specified matnx in MATLAB's main workspace. The matrix
has one column per input element and one rowe per zimulation step. Data
iz niot available until the simulation iz stopped or paused.

— Parameters
Wariable narme:

|+

b airuarm number of rows:
Jinf

Decimatiorn:

|

Sample tirme:

|

Save format: | M atrix j
Structuretith T ime
| St

ture

The simulation parameters are chosen from simulation menu given below, fixed-step method, step size
=0.2. Observe aso the start and stop times. SIMULINK can be used to generate handily data. This
could a'so be done on the command side. Think of how to do it.

#|Simulation Parameters: nonlindatal !EI

Salver

Wiorkzpace /0 | Diagnnsticsl

Sirnulatian ke

Skark tirme: I 0.0 Stop time: I 10.0

Solver options

Type: IFi:-:ed-step j Idiscrete [ho continuous states) j

Fized step size: I 0z Maode: I.-'l‘-.uh:u j

Output options

Refine output j Hefire factan I 1

k. | Eancell Help | ¥ 1]

SOLUTION:
Define the input and output data vectors for the neural networks.

P=x;T=nonlin;

plot(P,T,'+")

title('Nonlinear mapping’);
xlabel ('Input Vector P");
ylabel ('Output vector T');
grid;

gi=input('Strike any key ...");

4 'Figure Ho. 1 M =E3
File Edit Toolz 'wWindow Help
== =20 N N RN e
Manlinear mapping
1+ . =
T '+ j +"'+
+ AR
* pt +
+ .
05t---- YTttt e el Fooo--- -
'+
— + ! +
= + N
) + :
2 b T . R -
= ! +
= + i
= 1 +
(s + .
+ +
O05p-------- fr--m-- - e —
+ +
++ + N
+ I +
1 R -
5 0 5
Ingut %ector P

% LEVENBERG-MARQUARDT:
net=newff([-6 6], [20,1], {'tansig’,'purelin’},'trainim’);

35

%Define parameters
net.trainParam.show = 50;
net.trainParam.Ir = 0.05;
net.trainParam.epochs = 500;
net.trainParam.goal = 1e-3;
%Train network

netl = train(net, P, T);

TRAINLM, Epoch 0/500, MSE 15.6185/0.001, Gradient 628.19/1e-010
TRAINLM, Epoch 3/500, MSE 0.000352872/0.001, Gradient 0.0423767/1e-010
TRAINLM, Performance goal met.

The figure below shows convergence. The error goal is reached.

| Training with TRAINLM

Fil= Edit Tool: ‘Window Help
IDzdae "A 2/, 2p0

z Performance is 0.000352872, Goal is 0.001
10 . T r . _

o

=

@ 1p°

o

(]

0

[ah]

=

0

2 10*

=

I

=

10 : - : : :
] 0.5 1 15 2 25 3
3 Enochs

The result of the approximation by multilayer perceptron network is shown below together with the
error.

a=sim(net1,P); plot(P,a,P,a-T,P,T)

xlabel(‘ Input X'); ylabel (* Output y');title(* Nonlinear function f(x)")

36

¥ 'Figure Mo. 1
File Edit Tools

Window Help

=10) x|

loz@a xaAa A/ @50

Monlinear function fx)

1

0.5

Input

Thereisstill some error, but let us proceed. Now we are ready to tackle the problem of solving the
hybrid problemin SIMULINK. In order to move from the command side to SIMULINK use command
gensim. Thiswill transfer the information about the neural network to SIMULINK and at the same
time it automatically generates a SIMULINK file with the neural network block. The second argument

is used to define sampling time. For continuous sampling the valueis—1.

gensim(netl,-1)

=] untitled3 * _[O]x]
File Edt “iew Simulation Format Tools
D& = |2 2 = | &
[rput 1 f———plptir vin————»)
p{1} w1l
Meural Hetwad
| | |nded5 4

Ready | 100%

If you open the Neural Network block, you can see more details.

=] untitled3/Meural Network = _ O =]

Eile Edit “iew Simulation Format Tools

MDzEga =2als = = | =

(1) ST >

pil} Layer 1 -a{.1}.

a1} M}

Fieady 100z | | |ode45 o

Open Layer 1. You'll see the usual block diagram representation of Neural Network Toolbox. In our
examples, Delays block is unity map, i.e., no delaysarein use.

=] untitled3/Meural Metwork/Layer 1 = _ O] =]

Eile Edit “iew Simulation Format Tools

MDzEga =2als = = | =

netzum tan=ig

Ready 1003 | | |ode45 4

Open also the weight block. The figure that you see is shown below. The number of nodes has been
reduced to 5, so that the figure fits on the page. In the example we have 20.

38

W1 A3}

dotprad

dotprad2

I 4 o
T

@<

pdf1,11 dotprad3 izf1,1}

To convince ourselves that the block generated with gensim really approximates the given data, we'll
feed in values of x in the range [-5,5]. Use the following SIMULINK configuration.

39

¥ 'Figure Mo. 1

File Edit Toolz *window Help

=10 x|

loz@a xaAa A/ @50

1

0.5

Now simulate the system.

[! nonhnnnsim *

File Edt “iew Simulation Format Tools

=10 x|

RMEEERE

Sumi

. 1
x

W]

Inbagratart Ta'Warkspace

.

(Rt i1 it

Haurl Hawwart,

—]]

TaWarkz el

Soape

Soapel

- o
=
Sumz Inzgratar2 Inzgratar] Ta'Warkzmo
i) i} :I [
Fen
Fin
Ta'Wartzmo]

40

Theresult is plotted below.

plot(tout,yout,tout,yhybrid)

title('Nonlinear system’); xlabel(‘Time in secs);

ylabel ('Output of the real system and the hybrid system’); grid;

| Training with TRAINLM _ O] x|
File Edit Toolz *Window Help

loz@a xa A/ 850

Monlinear system

0.4

1.

N2 F--F----

OFE-F-----

N4F-4----- E _______ :f _______

= 1 S R R

Cutput of the real systerm and the hybrid system

1] 5 10 15 20 25 30
Tirne in secs

Careful study shows that some error remains. Further improvement can be obtained either by adding
the network size or e.g. tightening the error tolerance bound.

41

If the datais noise corrupted the procedure is the same, except that it is recommended that data
preprocessing is performed. The datais shown below.

+ .Figure MHo. 1 O] x|
File Edt Toolz *Window Help

IR Y YA

Monlinear function fix)

15

Cutput f{x)

Input x

The following SIMULINK model shown below is configured to simulate noise-corrupted data.

=] nonlindata i [=]

Eile Edit “iew Simulation Format Tools

MDzEga 2elo = « | =

i —>>>

Unifarm Randem &ain
Mumber

nanlin

+ +

P‘n. To Warkspace

¥

Sine Miave

®7

Clock

o= S

To Waotkspaced

-

Constant

Ready 1003 |ode45 4

42

The result of the approximation by multilayer perceptron network is shown below together with the
error.

| Training with TRAINLM _ O] =]
File Edt Toolz *Window Help

I Y YA

1.5

Output vector T, output of neural network and erro

Input Wectar P

As can be seen in the figure, thereis till error, but since the given datais noisy, we are reasonably
happy with the fit. Preprocessing of data, using e.g. filtering, should be carried out before neural
network fitting.

Now we are ready to tackle the problem of solving the hybrid problemin SIMULINK. Again use
command gensim.

gensim(netl,-1)

43

REMARK: The other way to set up your own neural network from the blocksisto look under
Blocksets & Toolboxes.

=] Library: simulink3 -10] x|

Eile Edit “fiew Format

wha | [udw + - Ar | |t F
— 8 = =% y=fitu) \ In Outf
Ll IR .
Saurces Sinks Continuous Discrete Il ath Functions Monlinear Signals
& Tables & Systems
Blochsets & Simulink Blodk Library 3.0 o
Toolboses Copyright (c) 1990-1995 by The Mathilioks, Ine. Emas

E! Library: Blockzetz_and_Toolbo - | Ellﬂ

File Edit “iew Format

Comm Blodset Controls Fuzzy Logic ToolbosSystem D P MNeural Metwak
Toolbox Blocks Blocks Blockset
T |
Simulink Stateflow
Extras

~iBix]

" File Edit “iew Fomat

i G 0

Transfer Functions Met Input Functions Weight Functions

Meural Network Toolbax Black Librany
Copyright () 1992-98 by The hathWads, Inc.

The basic blocks can be found in the three block libraries: Transfer Functions, Net Input Functions and
Weight Functions. Parameters for the blocks have to be generated in the Command window. Then the
SIMULINK configuration is performed. This seems to be quite tedious and the added freedom does
not seem to be worth the trouble. Perhaps, in the coming versions of the Toolbox, a more user-friendly
and flexible GUI is provided. Currently, the use of gensim command is recommended.

To convince ourselves that the block generated with gensim really approximates the given data, we'll
feed in values of x in the range [-6,6]. Use the following SIMULINK configuration for comparison.

E! nonlindata = =13

File Edit “iew Simulation Format Tools

D@ s2d| a2 « | B

s —>p>>

Uniform Randam Sain

Mumber
+ #= nonlin I:I
+
Tao Miatspace

I'n\. Scope
4

Sine Mave

Ppill wil} L nn

(3 Meural Mehword:
Clack —I
+ > ®

: i
To Watspace]

Ready [100 |oded5 o

To Wokspace:

Yy

Constant

The result is quite satisfactory.

o 'Figure Mo. 1 M=l E3
File Edt Toolz *Window Help

D& NA A/ 2o

1.5

i
|
P
'
2
= bk---
[T
=

-1.5
B

Now simulate the system.

45

=10 x|

¥ 'Figure Mo. 1
File Edit

p

loz@a xaAa A/ @50

“Windoma Hel

Toolz

Monlinear noisy mapping

r = e R e i B

& 1o1aas nding

10

Time in secs

Simulation result looks quite reasonable.

46

PROBLEM 1. Function approximation.

a. Generate by whatever meansinput data for the function

y(x)=x2+3x
when
—4<x<4.

b. Plot the data
c. Fit multilayer perceptron and radial basis function networks on the data and
compare with the original.

SOLUTION:
Xx=-4:0.05:4; y=x*x+3*X;
P=x;T=y,
Plot the data
plot(P,T,'0")
grid;, xlabel(‘time (9)"); ylabel(‘output’); title('parabola’)
Figure No_ 1 _ O] x|
File Edit ‘window Help
parabola
a0
25
20
= 15
o
=
= o
]
|:| L
= .
-4 -2 0 2 4
tirme 1=

netl=newrb(P,T,0.01);

%S mulate result
a= sim(netl,P);

%Pl ot the result and the error
plot(P,a-T,P,T)

47

Figure No. 1 _ O] x|
File Edit ‘window Help

a0 - . .

2t

20+

=

10

Generate the corresponding SIMULINK model.
gensim(netl,-1)

Thisresultsin the following configuration

untitled M= E3

Eile Edit “iew Simulation Format Tools

[DcEa| sz »r =

p{1} ¥}

p{1} i
Meural Metwa

Ready | | | nded5 4

Change the input so that it will cover the range [-4, 4]. One way to do it is shown below.
Y ou need to open SIMULINK by typing Simulink in MATLAB command side.

Change a so the simulation parameters to fixed parameter simulation. The method is not critical.
Use e.g. Heun’ s method.

48

untitled _ O]

Eile Edit “iew Simulation Format Tools

(D& e =

+
C BT it >|E|

Clack +
i
ﬂ Sum Meural Metwa

Constant W yout
><

To Motspace

Tao Motspace

Ready | | |ode2 -

When simulated and plotted on MATLAB command side, plot (x,yout) resultsin

Figure No. 1 _ O] x|
File Edit 'Windaw Help

35
30
25
20
15
10

The result does not [ook like a parabola, but a closer examination revealsthat in the interval [-4,4] the
approximation is fine. Because the default value of simulation is 10 s, it can be observed that from —4
wegoto upto 6 s, which is of course outside the range. Therefore the simulation should be limited
onlyto8s.

Now the figure looks all right.

49

¥ Figure No._ 1 O] x|
File Edit Window Help

30

25r

20r

151

10F

PROBLEM 2. Consider
X=-0.6x+ f(X)
when f(X) = 3% + 3x.

a. Simulate the system response for exact f(x) and the neural network approximation.
Use different initial conditions. Compare the results.

b. Addnoisetof(x), f(x) = ¥* + 3x + noise.
Noise is bandlimited white noise (default from Simulink block).

SOLUTION: Continuation from problem 1: We have verified in SIMULINK that the neural network
approximation is good. Let us useit in differential equation solution.

plot(x,ynn)
grid; xlabel('time (9)"); ylabel(* aproximated output'); title(‘Nonlinear differential equation’)

+¥ Figure No. 1 =13
File Edit “Window Help

Monlinear differential equation
0.06

C besemceecdetceseas Looenss
.

| EEEEG

OF--------

002} -----f--

boodooobdooboodooad

JESRS S R

B T T
| SEEFEEEE

apraximated output

008} ------

Loodooolhooo
boodooobooo

O b mmfmmm e e e

-0.12
]

R ===

l'D. b - - -
o) k===
]

50

PROBLEM 3. Repesat problem 1 using Kohonen’s Self-Organizing Map (SOM).

SOLUTION: Generate parabolic data and plot it. Note that input x and output y are now combined and
put in matrix P.

x=-1:0.05:1; y=x*x/3+2;

P=[xyl;

plot(P(1,:),P(2,:),'+r")

Define the SOM network. Try asimple one. The map will be a 1-dimensional layer of 10 neurons.

net=newsom([-1 1;0 1] ,[10]);

The first argument specifies two inputs, each with arange of 0 to 1.
The second determines the network is one dimensional with 10 neurons.

Define parameters in the algorithm. First use only the basic scheme, in which the maximum number of
iterations is determined.

net.trainParam.epochs = 1000;

Train network by calling train
netl=train(net,P);

Now plot the trained network with PLOTSOM:
plotsom(netl.in{1,1},netl.layers{1}.distances)

Next simulate result
% The map can now be used to classify inputs, like[1; Q].

a=sim(net,[1;0])
% Either neuron 1 or 10 should have an output of 1, as the above

% input vector was at one end of the presented input space.
% Thefirst pair of numbers indicate the neuron, and the single indicates its output.

Figure No_ 1 M=l E3

File Edit *Window Help

YWeight “ectors
28F==---- pooTooooE yooToooooT

51

PROBLEM 4. Neural function networks are good function approximators, when the function to be
approximated is smooth enough. This means that function is at least continuous on compact set,
because then the Weierstrass theorem applies. (Check your calculus book, if you have forgotten what
thistheorem is al about).

What has not been studied is how well they suit for approximating hard nonlinearities.
Use SIMULINK to generate input-output data for

a. saturation nonlinearity and

b. relay.
Determine, which neural network structure would be best for the above.

HINT: For deadzone nonlineearity the data generation can be done using sin-function input for
appropriate time interval.

PROBLEM 5. A systemisdescribed by afirst order difference equation

y(k+2) =0.3y(k+1) + 0.6y(k) + f (u(k))

where f (u(k)) = u® +0.3u% = 0.4u and u(K) is random noise.

c. Generate datain appropriate range for f(u) and fit a neural network on the data.
d. Simulate the system response for exact f(u) and the neural network approximation.
Compare the results. Initial condition could be zero. Input can be assumed to be

noise.
SOLUTION:
dizcretell =]
File Edit “iew Simulation Format Tools
[Dema[=.ar =
————————— |+ 1 1
—P.I —b. = = ...I:l
ra ra
Sum Unit Delay | Unit Delayd Scope
0.3
ain
I:I.Ei}{—
Zaini
’ i) — ’\\Nt J‘lUlL[r
. Band-Limited
_, 1 Fen U"'f'u[lnmi‘l':d':'m Wihite Moise
Scope
Ready |FiredStepDiscrete 4

52

dizcretel _ O]

Eile Edit “iew Simulation Format Tools

[DzE&| s = o] » =

——————————————+ 1 1
> U N B]
+ =z s
Sum Unit Crelay Unit Crelay Scope
0.3
Zain

n_a}.f

zain
vill pit} 'I—JJ‘-"L[r
MNeural Netuork Elanf:I-Limi.tEl:I
White Moize
Ready | | |oded5 o

The neural network approximation can be obtained in various ways, e.g., analogously to Example 1,
using the following commands

%Generate parabolic data

u=-10:0.1:10; y=u."3+0.3*u."2-0.4*y;
P=u;T=y;

%Define network
net=newff([-10 10], [10,1], {'tansig’,'purelin'},'trainim’);

%Define parameters
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-3;

%Train network
netl = train(net, P, T);

Plot the result

%S mulate result
a= sim(netl,P);

%Plot result and compare
plot(P,T,P,a-T)

Title('Cubic function: y=u"3+0.3u"2-0.4u")
xlabel('Input u'); ylabel (‘Output y')

53

4 Training with TRAINLM _ O =]
File Edit ‘window Help

Cubic function: y=u-H1. 3040 41

1500

1000

¥
T

1 R ARELELEL EELELEEER SLEL P AtE
5 .
= 1
E; :
O 0 .
| beeofocecboccoccnedononeccacbocoonons
1000 - : -
-10 -5] o 10
Input u

Result of simulation — uniform random number, exact f(u).

200 400 E00 200 1000

Time offzet; 0

Questions about simulation:

WHAT TO DO IF INPUT GOES OUT OF RANGE? What is the default action in SIMULINK?
Scaling (analog computation — since you are now faced with analog components)

What about noise — random numbers or bandlimited noise (SIMULINK problem)

PROBLEM 4. Consider
%=—-0.6%+ f(X)

when f(X) = 3% + 3x.

a. Generate datain appropriate range for f(x) and fit a neural network on the data.
b. Simulate system response for exact f(x) and the neural network approximation.

Use different initial conditions.
Compare the results.

SOLUTION: Continuation from problem 1: We have verified in SIMULINK that the neural network

approximation is good. Use it in the differential equation simulation.

PROBLEM 6. Fit amultilayer perceptron network ony = 2x.
Prunethe network size with NNSY SID.

SOLUTION:

x=0:0.01:1; y=2*x;

P=xT=y;,

net=newff([0 2], [20,1], {'tansig','purelin'},'traingd');

net.trainParam.show = 50; % The result is shown at every 50th iteration (epoch)
net.trainParam.Ir = 0.05; % Learning rate used in some gradient schemes
net.trainParam.epochs = 1000; % Max number of iterations

net.trainParam.goal = 1e-3; % Error tolerance; stopping criterion

netl = train(net, P, T);

| Training with TRAINGD _ O] x|
Eile Edit Tools *window Help

IDEeEdae "A A/ ®eo
Performance is 0.00157664, Goal is 0.001

x

10

10" |

Training-Blue Goal-Black

1] 200 400 GO0 aoa 1000
1101 Fanrchs

a= sim(netl,P);

%0Plot the result and the error
plot(P,aT,P,T)

55

| Training with TRAINGD _[O] x|
Eile Edit Tools *window Help

IDEEd&S NA A/ BP0

otraight line, y = 2x
2 . :

15¢

0&t

Cutput of netwoark and errar

_DE 1 1 1 1
a 0.2 0.4 0.5 0.8 1

¥

This apparently contains fairly significant error.

Use the same network size, but apply Levenberg-Marquardt algorithm.

| Training with TRAINLM _[O] =
File Edt Toolz *Window Help

I Y YA

2 T T T T

1.5}

05 r

o 0.2 0.4 0.6 0.8 1

56

APPENDI X
NEWSOM Create a self-organizing map.

Syntax

net = newsom (PR,[d1,d2,...] ,tfcn,dfcn,olr,osteps,tir,tns)
Description

Competitive layers are used to solve classification problems.

NET = NEWSOM (PR,[D1,D2,...], TFCN,DFCN,OLR,OSTEPS, TLR,TNS) takes,
PR - Rx2 matrix of min and max valuesfor R input el ements.
Di - Sizeof ith layer dimension, defaults =[5 8].
TFCN - Topology function, default = 'hextop'.
DFCN - Distance function, default = 'linkdist'.
OLR - Ordering phase learning rate, default = 0.9.
OSTEPS - Ordering phase steps, default = 1000.
TLR - Tuning phase learning rate, default = 0.02;
TND - Tuning phase neighborhood distance, default = 1.
and returns a new self-organizing map.

The topology function TFCN can be HEXTOP, GRIDTOP, or RANDTOP.
The distance function can be LINKDIST, DIST, or MANDIST.

Examples

Theinput vectors defined below are distributed over
a 2-dimension input space varying over [0 2] and [0 1].
This datawill be used to train a SOM with dimensions [3 5].

P = [rand(1,400)*2; rand(1,400)];
net = newsom([0 2; 01],[35]);
plotsom(net.layer {1} .positions)

Here the SOM istrained and the input vectors are plotted with
the map which the SOM's weights has formed.

net = train(net,P);
plot(P(1,:),P(2,:),".d','markersize',20)
hold on

plotsom(net.iw{1,1},net.layers{1}.distances)
hold off

Properties

SOMs consist of asingle layer with the NEGDIST weight function,
NETSUM net input function and the COMPET transfer function.

The layer has aweight from the input, but no bias.
Theweight isinitialized with MIDPOINT.

Adaptation and training are done with ADAPTWB and TRAINWB,
which both update the weight with LEARNSOM.

Seeaso SIM, INIT, ADAPT, TRAIN, ADAPTWB, TRAINWB1.

57

GENSIM Generate a SIMULINK block to simulate a neural network.

Syntax
gensim(net,st)
Description

GENSIM(NET,ST) takes these inputs,

NET - Neura network.

ST - Sampletime (default = 1).
and creates a SIMULINK system containing a block which
simulates neural network NET with a sampling time of ST.

If NET has no input or layer delays (NET.numinputDelays
and NET.numLayerDelays are both 0) then you can use -1 for ST to
get a continuously sampling network.

Example

net = newff([0 1] ,[5 1]);
gensim(net)

58

NNSY SID
Use datafrom example 4 — discretell.

[us,uscale]=dscale(u’); [youts,yscal €] =dscal e(yout’);

SOMETHING STRANGE —no scaling if plotted! Maybe SY SID Toolbox.

59

