
ACO for Continuous and Mixed-Variable
Optimization

Krzysztof Socha

IRIDIA, Université Libre de Bruxelles, CP 194/6,
Av. Franklin D. Roosevelt 50, 1050 Brussels, Belgium

ksocha@ulb.ac.be

http://iridia.ulb.ac.be

Abstract. This paper presents how the Ant Colony Optimization (ACO)
metaheuristic can be extended to continuous search domains and applied
to both continuous and mixed discrete-continuous optimization prob-
lems. The paper describes the general underlying idea, enumerates some
possible design choices, presents a first implementation, and provides
some preliminary results obtained on well-known benchmark problems.
The proposed method is compared to other ant, as well as non-ant meth-
ods for continuous optimization.

1 Introduction

Optimization algorithms inspired by the ants’ foraging behavior proposed by
Dorigo in his PhD thesis in 1992 have been initially used for solving combinatorial
optimization problems. They have been eventually formalized into the framework
of the Ant Colony Optimization (ACO) metaheuristic [7]. ACO has proven to
be an efficient and versatile tool for solving various combinatorial optimization
problems. Several versions of ACO have been proposed, but they all follow the
same basic ideas:

– search performed by a population of individuals, i.e. simple independent
agents,

– incremental construction of solutions,
– probabilistic choice of solution components based on stigmergic information,
– no direct communication between the individuals.

Since the emergence of ant algorithms as an optimization tool, some attempts
were also made to use them for tackling continuous optimization problems. How-
ever, at the first sight, applying the ACO metaheuristic to continuous domain
was not straightforward. Hence, the methods proposed often drew inspiration
from ACO, but did not follow exactly the same methodology.

Up to now, only a few ant approaches for continuous optimization have been
proposed in the literature. The first method – called Continuous ACO (CACO)
– was proposed by Bilchev and Parmee [2] in 1995, and also later used by some
others [17, 12]. Other methods include the API algorithm by Monmarché [13],

and Continuous Interacting Ant Colony (CIAC), proposed by Dréo and Siarry [9,
8].

Although both CACO and CIAC claim to draw inspiration from the ACO
metaheuristic, they do not follow it closely. All the algorithms add some ad-
ditional mechanisms (e.g. direct communication – CIAC and API – or nest –
CACO) that do not exist in regular ACO. They also disregard some other mech-
anisms that are otherwise characteristic of ACO (e.g. stygmergy – API – or
incremental construction of solutions – all of them). CACO and CIAC are dedi-
cated strictly to continuous optimization, while API may also be used for discrete
problems.

Contrary to those earlier approaches, this paper presents a way to extend
a generic ACO to continuous domains without the need to make any major
conceptual changes. Such extended ACO, due to its closeness to the original for-
mulation of ACO, provides an additional advantage – the possibility of tackling
mixed discrete-continuous optimization problems. In other words, with ACO it
should be now possible to consider problems where some variables are discrete
and others are continuous.

The reminder of the paper is organized as follows. Section 2 presents the
idea and enumerates the possible design choices. Section 3 provides a short dis-
cussion of the proposed solution with regard to other methods for continuous
and mixed-variable optimization. Section 4 presents the choices made for the
first implementation and compares some initial results with those obtained by
competing methods. Finally, Sec. 5 presents the conclusions and future work
plans.

2 ACO Extended to Continuous Domain

When ACO is used for combinatorial optimization problems, ants construct so-
lutions incrementally. Each ant starts with an empty solution S0 and at each
construction step i a component of the solution is added. The definition of a
solution component depends on the problem tackled. In case of the popular ex-
ample of Traveling Salesman Problem (TSP), a component of the solution is a
city that is added to a tour. For other problems the solution components may
be defined differently.

In order to choose, which of the available solution components Ci should be
added to the current partial solution Si, a probabilistic choice is made. This de-
cision is usually influenced by amount of pheromone τ associated with available
choices, and by heuristic information about the problem. Without the loss of
generality, we focus on a case when no heuristic information is used. The proba-
bility of choosing a solution component c ∈ Ci at step i in iteration t, assuming
that the partial solution constructed so far is Si, is a normalized pheromone
value associated with this component:

pSic(t) =
τSic(t)∑

j∈Ci τSij(t)
(1)

Algorithm 1 Ant Colony Optimization extended to continuous domain
input: An objective function R 3 f(x) : x ∈ Rn

τ i ← initial probability distribution P i(xi), i ∈ {1..n}
while (stop condition not met) do
{iterate through all m ants}
for a = 1 to m do
{construction process of ant a}
s0 ← ∅
for i = 1 to n do

choose value xi randomly according to probability distribution P i(xi)
si ← si−1 ∪ {xi}

end for
end for
sI best ← iteration best solution
sGbest ← best of sI best and previous global best sGbest

τ ← pheromone updated based on one or more solutions found
end while
output: Best solution found sGbest.

Hence, in case of combinatorial optimization problems, at each construction
step the ants make a probabilistic decision according to some discrete probability
distribution.

In case of continuous optimization problems, the domain changes from dis-
crete to continuous. The logical adaptation would be to also move from using the
discrete probability distribution to a continuous one – the Probability Density
Function (PDF). Instead of choosing at step i a component c ∈ Ci, the ants
would generate a random number according to a certain PDF P i(xi).

More formally, the proposed ACO algorithm extended to continuous domain
is presented in Alg. 1. Clearly, the general structure does not differ from a generic
ACO, but it is extended to handle continuous variables. The probability distri-
butions P i(xi) may be either discrete or continuous.

2.1 Probability Density Function (PDF)

One of the most popular functions that is used as PDF for estimating distribu-
tions is the normal (or gaussian) function:

g(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (2)

The normal PDF has some clear advantages, such as a fairly easy way of
generating random numbers according to it, but it also has some disadvantages.
A single normal PDF is not able to describe a situation where two disjoint areas
of the search space are promising, as it only has one maximum.

Due to this fact, we used a distribution based on the normal PDF, but
slightly enhanced – a mixture of normal kernels. Similar constructs have been

−4 −2 0 2 4

x

mixture of normal kernels PDF
individual normal PDFs

Fig. 1. Example of five normal PDFs and their sum – the resulting mixture of normal
kernels – on the interval (−5, 5).

used before [3], but not exactly in the same way. We define it as a weighted sum
of several normal PDFs, and denote it as G:

P (x) = G(x,ω, µ, σ) =
k∑

j=1

ωj · g(x, µj , σj) (3)

where ω is the vector of weights associated with the components of the mixture,
µ is the vector of means, and σ is the vector of standard deviations. The dimen-
sions of all those vectors are equal to the number of normal PDFs constituting
the mixture. For convenience we will use parameter k to describe this number
dim ω = dim µ = dim σ = k.

Such a distribution allows for reasonably easy generation of random numbers
accoding to it, and yet it provides a much increased flexibility in the possible
shape. An example of how such a mixture may look like is presented in Fig. 1.

For the remaining part of this paper we will use the notation P i(xi) to
indicate the i-th mixture of normal kernel PDFs: P i(xi) = G(xi, ωi,µi,σi), and
P i

j (x
i) to indicate the j-th single normal PDF: P i

j (x
i) = g(xi, µi

j , σ
i
j) being part

of the i-th mixture. Therefore:

P i(xi) =
ki∑

j=1

ωi
j · P i

j (x
i) (4)

Additionally, we will use simply the term mixture to refer to a mixture of
normal kernel PDFs.

2.2 Solution Construction

The construction of solutions in ACO for continuous domain is done in principle
in the same manner as in the case of regular ACO. At each step i, each of the
ants chooses a component of the solution based on the probability distribution.

If the component is to be chosen based on discrete probability distribution, it is
done exactly the same way as in the case of regular ACO.

In case of continuous domain, a component is a value xi of a single dimension
of the solution x ∈ Rn. Rather than using discrete distribution, the continuous
PDF P i(xi) is used as defined in (3). At step i, an ant generates a random number
according to the i-th mixture P i(xi). This is accomplished in two stages. First,
an ant chooses probabilistically a single normal PDF P i

j (x) from the mixture
P i(xi) as in (4), with probability pi

j proportional to ωi
j :

pi
j =

ωi
j∑ki

l=1 ωi
l

(5)

Following that, an ant generates a random number according to the chosen
P i

j (x
i). This may be done using a random number generator that is able to

generate random numbers according to a parameterized normal distribution, or
using a uniform random generator and (for instance) the Box-Muller method [4].

2.3 Pheromone Maintenance

Each mixture P i(xi) representing the i-th pheromone distribution is described
by a triplet of vectors (ωi,µi, σi) of equal dimension ki. The larger the ki, the
more complex distributions may be described by this PDF. In particular, such
a PDF may have at the most ki maxima.

Initialization. Initially the pheromone distribution P i(xi) must consist of at
least one (it could be more) normal PDF P i

j (x
i). A reasonable choice must be

made. If no prior information is given about the problem, it is reasonable to
start with a rather uniform distribution over the search domain (a, b). This is
not quite achievable using the mixture of normal kernel PDFs, but reasonable
examples include a single normal PDF1 P i

1(x
i):

P i(xi) = P i
1(x

i) = g

(
xi,

a + b

2
,
b− a

2

)
(6)

or a set of ki normal distributions P i
j (x

i) with uniformly distributed means:

P i(xi) =
ki∑

j=1

1
ki
· g

(
xi, a + (2j − 1)

b− a

2ki
,
b− a

2ki

)
(7)

In some cases, in particular when the algorithm uses frequent restarts, the
distribution P i(xi) may be initialized with a randomized version of the one
presented in (7). In such a case, one or more parameters of the distribution may
be randomized: (i) standard deviations, (ii) means, (iii) weights, or (iv) number
ki of the normal PDFs.
1 Note that it is necessary in such a case that ωi

1 = 1

Update. Pheromone update is a process of modifying the probability distribu-
tion used by the ants during the construction process, so that it can guide the
ants towards better solutions. This process traditionally consists of two actions:
(i) reinforcing the probability of the choices that lead to good solutions – pos-
itive update, and (ii) decreasing probability of other choices (i.e. forgetting bad
solutions) – negative update.

In ACO for continuous domain, the positive update may be accomplished by
incorporating in the mixture P i(xi), an additional normal PDF P i

j (x
i) for each

solution used for the update. The mean µi
j of this new distribution should be

equal to the value of the solution component xi used for updating the probability
distribution P i(xi). The values of ωi

j and σi
j may be chosen based on the state

of the search, or the quality of the solution used for the update. The number
of normal PDFs ki constituting the mixture P i(xi) should be appropriately
increased: ki ← ki + o, where o is the number of solutions used for the update.
For each dimension i ∈ {1..n} the update is given by:

P i(xi) ← P i(xi) +
o∑

j=1

P i
j (x

i)

ki ← ki + o
(8)

Negative update is usually done in traditional ACO through pheromone evap-
oration [7]. However, also other alternative solutions have been presented in the
literature. For instance, in Population-Based ACO [10]–the pheromone is added
or removed from the pheromone matrix, as the individual solutions enter or are
being removed from the population.

ACO for continuous domain allows for significant flexibility in the way the
negative update is accomplished. In the following paragraphs we describe three
example methods of achieving it. Others may also be possible.

One of the most obvious methods for negative update is the opposite of the
positive update method presented in (8). Just as any new normal PDF P i

j (x
i)

may be added to the mixture P i(xi), in the same manner any existing one may
be removed. More formally the process of removing a set of O ⊂ {1..ki} normal
PDFs for each dimension i ∈ {1..n} may be presented as follows:

{
P i(xi) ← P i(xi)− ∑

j∈O

P i
j (x

i)

ki ← ki − |O|
(9)

The second method for negative update is inspired directly by the pheromone
evaporation in case of generic ACO. In case of a mixture of normal kernels PDF
P i(xi), it is possible to evaporate the vector of weights ωi, for each dimension
i ∈ {1..n} and each normal PDF j ∈ {1..ki} according to evaporation rate ρ:

ωi
j ← (1− ρ) · ωi

j (10)

The third method that may be considered, exploits the properties of the
probability distribution used – the mixture of normal kernel PDFs. Assuming
that the positive update is done as presented in (8), each new normal PDF

added to the mixture is based on some point that identifies a promising area
of the search space. The idea of negative update is that as time passes, the old
promising areas may become less promising. One of the ways of expressing this
fact is, in the case of the normal PDF, the increase of the standard deviation σ.
As this does not mean that the particular normal PDF will be less probable, but
rather that the numbers generated according to this distribution will have more
spread, we call this type of negative update dissolving instead of evaporation.
The idea is then to increase the standard deviation σi

j of normal PDF P i
j (x

i)
for each dimension i ∈ {1..n} and for each normal PDF j ∈ {1..ki}, with each
iteration by:

σi
j ← γ · σi

j (11)

where γ is the parameter describing the rate of dissolving.
Obviously, the three methods proposed here for negative update of the prob-

ability distribution may be combined. In particular, the method presented in (9)
may be combined with the other two in order to maintain a reasonable number
of normal PDFs within the mixture. Otherwise, the size of the mixture may
become too large to be handled easily. Ideas based on MAX -MIN Ant Sys-
tem [16] may be used for removing for instance only those normal PDFs whose
weight ω dropped below a certain minimal value, or whose standard deviation
σ exceeded a certain maximal threshold.

3 Discussion

The ACO algorithm presented in this paper may be studied from at least two
different points of view. It may be used either as a method of solving continuous
(or global) optimization problems, or as a method of solving mixed-variable
(discrete and continuous) optimization problems.

3.1 Continuous Domain

ACO as a continuous optimization algorithm is part of a rather large family of
algorithms for continuous optimization. For these types of problems, a number
of methods have been proposed in the literature. They include some ant-related
methods [2, 13, 9] already briefly presented in Sec. 1, but also many others. Many
optimization algorithms have been originally developed for combinatorial opti-
mization and only afterwards adapted also to the continuous case. Examples
include the Continuous Genetic Algorithm (CGA) [6], Enhanced Simulated An-
nealing (ESA) [15], or Enhanced Continuous Tabu Search (ECTS) [5].

There are also other methods that – similarly to ACO – explicitly use some
notion of probability estimation. Examples of the latter include the Iterated
Density Estimation Algorithm (IDEA), or PBIL–Population-Based Incremental
Learning. Similarly to ACO, they have been initially used for combinatorial
optimization, and only later also adapted to handle continuous domains [3, 18].

ACO for continuous domain is similar to continuous PBIL or IDEA in the
same sense, as generic ACO is similar to their discrete counterparts. It explicitly
uses an estimation of probability distribution in order to find promising areas
for the search. ACO differs from almost all of the methods mentioned here in
the sense that it does not simply choose and evaluate the solutions, but builds
them incrementally. Only PBIL uses similar incremental approach.

3.2 Mixed Variable Domain

ACO as an algorithm for optimization of mixed-variable problems does not have
too many competitors at the moment. None of the other ant-related methods al-
lows the intuitive handling of mixed-variable problems. There are few examples
in the literature of other types of algorithms that explicitly do that. They in-
clude the Mixed Bayesian Optimization Algorithm (MBOA) [14], Pattern Search
Algorithms [1], and the Bell-Curve Genetic Algorithm [11].

Since the mixed-variable optimization is not yet a very popular subject, there
are not many benchmark problems available that would allow to properly test
such an algorithm. Mixed-variable optimization remains nonetheless an interest-
ing area of research. The most obvious field where it may be used is optimization
of parameters. This could mean parameters of any physical process, or an algo-
rithm’s parameters – any case where some of the parameters may only assume
discrete and others continuous values from a certain range. A practical example
of such a mixed variable problem is the design of a thermal insulation system,
as presented in [1].

4 Initial Results

4.1 Implementation

The extended version of ACO algorithm presented here may be used for both
continuous and mixed-variable optimization problems. As a proof of concept
we have implemented ACO for continuous optimization problems. Many bench-
marks are available for these types of problems, and it is easy to compare the
results of ACO with those obtained by other methods.

We have implemented ACO allowing optimization of multidimensional con-
tinuous functions on a given range and to a given accuracy. As input, the al-
gorithm takes the following: the function to be optimized f(x) ∈ R, the search
domain x ∈ (a, b)n ⊂ Rn – where interval (a, b) is assumed to be the same for all
n dimensions, the known optimum2 so, the accuracy ε, and a set of parameters,
such as the number of ants m and the size of the mixtures k. As output, the al-
gorithm presents the best solution found and the number of function evaluations
performed.

2 As this is proof of concept algorithm, the known optimum was used to test the
performance of the algorithm against other methods.

The algorithm uses a different mixture of normal kernel PDFs for each of the
n dimensions. Each mixture consists of the same number k = k1..n of normal
PDFs. The solution construction is done exactly as presented in Sec. 2.2. The
pheromone update is done in the following way: At each iteration, the iteration
best solution is used for pheromone update. Positive update is done according to
(8), and negative update according to (9) – only one (the oldest) normal PDF
is removed. Since both actions are performed at the same time, the number k
of normal PDFs in the mixture does not change. An additional improvement in
the algorithm’s performance was achieved by adding a simple elitist strategy.
The normal PDF associated with the global best solution is never removed. If it
is also the oldest one, then the second oldest normal PDF is rather removed.

The pheromone distribution for each variable xi is initialized with a slightly
randomized version of the one presented in (7). The vector of means µ is ran-
domly selected from the interval (a, b) using a uniform random number generator.

At each iteration of the algorithm, m ants construct the m solutions to the
problem. A different mixture P i(xi) is used when choosing each component xi

of the solution. Due to the nature of the PDF used, it is possible that some of
the generated solutions Sc will fall outside of the search domain x ∈ (a, b)n ⊂
Rn. Those solutions are dropped before being evaluated. All other solutions are
evaluated, and the iteration best solution sI best is chosen. The oldest component
P i

j (x
i) of each mixture is removed, and a new component is added. The new

component PDF takes its mean from the value of the respective solution variable:
µi = xi

sI best
.

The standard deviation σi of the normal PDFs P i
j (x

i) used for the update,
is chosen adaptively based on the index of current iteration c and the solutions
found in this iteration s1..m = (x1, .., xn)1..m ∈ Sc:

σi = max
(

max (xi
1..m)−min (xi

1..m)√
c

, ε

)
(12)

At each iteration, if the sI best is better than the sI best, the latter is replaced.
The stopping criterion is the required accuracy. The new global best solution
sGbest is compared to the known optimum so. The algorithm stops if the follow-
ing condition is met [6, 8]:

|sGbest − so| < εrel · so + εabs ⇒ STOP (13)

where εrel = εabs = ε.

4.2 Results

The preliminary results presented here are based on 100 independent runs of the
ACO algorithm on each of the test functions. The parameters used for tackling
each test function are presented in Tab. 1. In order to have comparable results,
the accuracy ε was chosen based on the results of the other algorithms published
in the literature. The other parameters were chosen empirically based on some
limited experimentation – about 10 configurations of parameters were tried for

Table 1. ACO parameters used for solving different benchmark problems: m–number
of ants, k–number of normal PDFs per each of n dimensions, and ε–required accuracy.

Test Function d m k ε

Sphere Model (SM) 6 8 3 1 · 10−4

Goldstein and Price (GP) 2 6 4 1 · 10−4

Rosenbrock (R2) 2 30 8 3 · 10−3

Zakharov (Z2) 2 8 4 1 · 10−4

Hartmann (H3,4) 3 12 5 1 · 10−3

Table 2. Comparison of average number of function evaluations until the algorithm
stop, on different benchmark problems. Results for some of the algorithms were not
available – hence some entries are missing. The brackets indicate that the results are
based on the runs with a fixed number of evaluations.

Other Ant Methods Non-Ant Methods
f(x) ACO CACO [17] API [13] CIAC [8] CGA [6] ECTS [5] ESA [15]

SM 695 22050 [10000] 50000 750 338 -
GP 364 5330 - 23391 410 231 783
R2 2905 6842 [10000] 11797 960 480 796
Z2 401 - - - 620 195 15820

H3,4 457 - - - 582 548 698

each test function. The results obtained by the other methods found in the
literature are presented in Tab. 2.

The comparison presented here may be used only as an indication of the po-
tential of ACO, and not as an exhaustive comparison of continuous optimization
methods. The results found in the literature have been obtained under differ-
ent conditions (e.g. slightly different stopping criteria). Also, the simple average
number of evaluations does not fully describe an algorithm’s performance. Other
measures of the performance may be important, such as variance, stability, ac-
curacy, or even the ease of the implementation.

It is clear that when considering only the number of function evaluations,
ACO (for the limited number of cases presented here) is better than any of the
other ant-related methods. However, more detailed analysis on a wider sample
of test functions will have to be performed in order to add statistical significance
to this claim. Considering the other continuous optimization methods, ACO’s
performance is similar. Again, larger sets of benchmarks and unified evaluation
methods would have to be employed to indicate particular advantages or disad-
vantages of ACO.

Due to the space limitations, the definitions of the test functions used for
performance evaluation are not provided in the paper. They may be found in
the literature [8, 6, 5], and also online3, along with the source code (in R) of the
ACO used to obtain the results presented in this paper.
3 http://iridia.ulb.ac.be/~ksocha/extaco04.html

5 Conclusions

We have shown how Ant Colony Optimization may be extended to continuous
and mixed-variable optimization domains. This can be done without any major
conceptual change to the original definition of ACO.

We have shown how such a new ACO algorithm may be designed, and what
are the possible design choices. We have reviewed other methods used for both
continuous and mixed-variable optimization from the literature. We have posi-
tioned ACO among them and explained how it differs from all other ant-related
approaches to continuous optimization.

Finally, we have presented the first implementation of ACO for continuous
problems, and shown that the method is at least competitive with the others
found in the literature.

Our future work plans are twofold. On one side we would like to fine-tune
the algorithm, so that its performance on continuous benchmark functions may
be further improved. Also, as the initial tests of the algorithm were performed
on problems that only had few dimensions, we plan to test the algorithm on
higher-dimensional problems.

The second direction of possible research is a practical application of ACO to
mixed-variable optimization. We plan to either find or create benchmarks that
would allow the evaluation the performance of the algorithm on those types of
problems. Also, if possible we will look for practical examples, where mixed-
variable optimization may be used.

Acknowledgments. This research was supported by the “Metaheuristics Network”,
a Marie Curie Research Training Network funded by the Improving Human Potential
programme of the CEC, grant HPRN-CT-1999-00106, and by the “ANTS” project, an
“Action de Recherche Concertée” funded by the Scientific Research Directorate of the
French Community of Belgium.

References

1. C. Audet and J. J. E. Dennis. Pattern Search Algorithms for Mixed Variable
Programming. SIAM Journal on Optimization, 11(3):573–594, 2001.

2. G. Bilchev and I. C. Parmee. The Ant Colony Metaphor for Searching Continuous
Design Spaces. In T. C. Fogarty, editor, Proceedings of the AISB Workshop on
Evolutionary Computation, volume 993 of LNCS, pages 25–39. Springer-Verlag,
Berlin, Germany, 1995.

3. P. A. N. Bosman and D. Thierens. Continuous Iterated Density Estimation Evo-
lutionary Algorithms within the IDEA Framework. In M. Pelikan, H. Mühlenbein,
and A. O. Rodriguez, editors, Proceedings of OBUPM Workshop at GECCO-2000,
pages 197–200. Morgan-Kaufmann Publishers, San Francisco, CA, USA, 2000.

4. G. E. P. Box and M. E. Muller. A note on the generation of random normal
deviates. Annals of Mathematical Statistics, 29(2):610–611, 1958.

5. R. Chelouah and P. Siarry. Enhanced Continuous Tabu Search. In S. Voss,
S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-Heuristics Advances
and Trends in Local Search Paradigms for Optimization, chapter 4, pages 49–61.
Kluwer Academic Publishers, Boston, MA, USA, 1999.

6. R. Chelouah and P. Siarry. A Continuous Genetic Algorithm Designed for the
Global Optimization of Multimodal Functions. Journal of Heuristics, 6:191–213,
2000.

7. M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization. McGraw-
Hill, New York, NY, USA, 1999.

8. J. Dréo and P. Siarry. Continuous Interacting Ant Colony Algorithm Based on
Dense Heterarchy. Future Generation Computer Systems, to appear.

9. J. Dréo and P. Siarry. A New Ant Colony Algorithm Using the Heterarchical Con-
cept Aimed at Optimization of Multiminima Continuous Functions. In M. Dorigo,
G. D. Caro, and M. Sampels, editors, Proceedings of the Third International Work-
shop on Ant Algorithms (ANTS’2002), volume 2463 of LNCS, pages 216–221.
Springer-Verlag, Berlin, Germany, 2002.

10. M. Guntsch and M. Middendorf. A population based approach for ACO. In
S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and G. Raidl, editors, Applica-
tions of Evolutionary Computing, Proceedings of EvoWorkshops 2002: EvoCOP,
EvoIASP, EvoSTim, volume 2279, pages 71–80. Springer-Verlag, Berlin, Germany,
3-4 2002.

11. R. K. Kincaid, S. Griffith, R. Sykes, and J. Sobieszczanski-Sobieski. A Bell-Curve
Genetic Algorithm for Mixed Continuous and Discrete Optimization Problems. In
Proceedings of 43rd AIAA Structures, Structural Dynamics, and Materials Confer-
ence. AIAA, Denver, CO, USA, 2002.

12. M. Mathur, S. B. Karale, S. Priye, V. K. Jyaraman, and B. D. Kulkarni. Ant
Colony Approach to Continuous Function Optimization. Ind. Eng. Chem. Res.,
39:3814–3822, 2000.

13. N. Monmarché, G. Venturini, and M. Slimane. On how Pachycondyla apicalis ants
suggest a new search algorithm. Future Generation Computer Systems, 16:937–946,
2000.

14. J. Očenášek and J. Schwarz. Estimation Distribution Algorithm for Mixed
Continuous-Discreet Optimization Problems. In Proceedings of the 2nd Euro-
Inernational Symposium on Computational Inteligence, pages 227–232. IOS Press,
Amsterdam, Netherlands, 2002.

15. P. Siarry, G. Berthiau, F. Durbin, and J. Haussy. Enhanced Simulated Annealing
for Globally Minimizing Functions of Many Continuous Variables. ACM Transac-
tions on Mathematical Software, 23(2):209–228, 1997.

16. T. Stützle and H. H. Hoos. MAX -MIN Ant System. Future Generation Com-
puter Systems, 16(8):889–914, 2000.

17. M. Wodrich and G. Bilchev. Cooperative distributed search: the ant’s way. Control
& Cybernetics, (3):413–446, 1997.

18. B. Yuan and M. Gallagher. Playing in Continuous Spaces: Some Analysis and
Extension of Population-Based Incremental Learning. In Sarker, R. et al., editor,
Proceedings of Congress of Evolutionary Computation (CEC), pages 443–450, 2003.

