Neural Network Based
Control System Design

TOOLKIT

For Use with MATLAB"

M agnus Nargaard

Department of Automation
Department of Mathematical Modelling

Tedhnical Report 96-E-830, Department of Automation

Tednical University of Denmark

DTU

Release Notes

Neural Networ k Based
Control System Design
Toakit

Version 1.0

Department of Automation, Technical University of Denmark, June 20, 1997

This note contains important information on how the present set of toolsis to be installed and the
conditions under which it may be used. Please rea it carefully before use.

It is important that the NNSY SID toolbox (Neural Network based SY Stem |Dentificaion) has
been installed in advance

INSTALL ING THE TOOLKIT

° The toadlkit is provided in two versions. One for MATLAB 4.2 an one for

MATLAB 5. Both versions have been tested under UNIX on a HP9000735 and
MATLAB 4.2c.1 for WINDOWS 3.1/95 on an IBM compatible PENTIUM.

° The aitire toalkit is implemented as ordinary m-files and thus it should work
equally well on al hardware platforms. However, a fast computer is highly
recommended.

° The Signal Processng toolbox is the only official MathWorks toolbox required by

NNCTRL. However, the Control Toolbox is aso used in one of the demonstration
programs (“lintest”). Although not a requirement, it is an advantage if SIMULINK
is available as well.

When properly installed, the structure of the toolkit is as follows:

* NNCTRL
Basic diredory containing dfferent Readme-files and the following three
subdiredories:

* CTRLTOOL
The acual toolkit functions and script-files.

« CTRLDEMO
Initialization filess, SIMULINK models, and mat-files used for
demonstration.

* TEMPLATE
“Templates’ for the initialization files which are cdled by the
programsin the CTRLTOOL diredory.

Your MATLAB path must include the diredory CTRLTOOL as well as the
direaory containing the NNSY SID toolbox:

>> path(path, /xxx'NNCTRL/CTRLTOOL")
>> path(path, /x}/xx'NNSYSI D’)

If the tools are going to be used on aregular basis it is recommended that the path
statements are included in ones personal startup.m file (see the MATLAB-
manual).

During normal use one begins by copying the initialization file assciated with the
desired control system from the TEMPLATE diredory to the working dredory.
The file must then be modified to comply with the gplicaion under
consideration. Typicd working procedures can be seen by running the
demonstration programs. Furthermore, the different text files found in the
NNCTRL diredory provide suppgementary information on this matter.

When running the demonstration programs the working dredory must be the
diredory NNCTRL/CTRLDEMO.

The dedks for incorred program/function cdls are not very thorough and
consequently MATLAB will often respond with quite incomprehensible aror
messages when a program or function is incorredly invoked.

CONDITIONS DISCLAIMER

By using the toolbox the user agrees to all of the following:

o

If one is going to publish any work in which this toolkit has been used, please
remember it was obtained free of charge ad include areference to this technicd
report (M. Nergaad: "Neural Network Based Control System Design Toolkit,”
Ted. Report. 96-E-830, Department of Automation, Technicd University of
Denmark, 1996.

Magnus Nergaad and the Department of Automation do not offer any support for
this product whatsoever. The tooalkit is offered freeof charge - take it or leave it!

The toolkit is copyrighted freevare by Magnus Ngrgaad/Department of
Automation, DTU. It may be distributed fredy unmodified. It is, however, not
permitted to utilize any part of the software in commercial products without prior
written consent of Magnus Nergaad, The Department of Automation, DTU.

THE TOOLKIT IS FROVIDED “ASIS” WITHOUT WARRENTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRENTIES OR CONDITIONS OF MECHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
MAGNUS NGRGAARD AND/OR THE DEPARTMENT OF AUTOMATION
BE LIABLE FOR ANY SPFECIAL, INCIDENTAL, INDIRECT, OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA, OR PROFITS,
WHETHER OR NOT MN/IAU HAVE BEEN ADVISED OF THE POSSBILITY
OF SUCH DAMAGES, AND/OR ON ANY THEORY OF LIABILITY ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

MATLAB isatrademark of The MathWorks, Inc.
MS-Windows is a trademark of Microsoft Coporation.

Trademarks of other companies and/or organizaions mentioned in this documentation appea for
identification purposes only and are the property of their respedive mpanies and/or
organizaions.

ACKNOWLEDGEMENTS

The work with these tools was initiated duing a stay at the Neuro-Engineaing Group, NASA
Ames Reseach Center. The group members, and in particular their “fealessleader” Dr. Charles
(“Chuck™) Jorgensen, are gratefully adknowledged for creding an inspiring atmosphere. | thank
Niels Kjalstad Poulsen from the Department of Mathematicd Modelling for generously letting
me draw on his wedth of knowlegde within most areas of control system design. Also, | wish to
adknowledge Ole Ravn, Paul Haase Sgrensen and Elbert Hendricks, Department of Automation
for their suggestions and comments. In al neural network related matters, Lars Kai Hansen and
the neural network group at the Department of Mathematicd Modeling has been a mgor
inspiration and | wish to thank them too.

June 20, 1997

Magnus Nergaad

Department of Automation, Building 326
Tednicd University of Denmark
2800Lyngby

Denmark

e-malil:pmn@iau.dtu.dk

1 Tutorial

This manual documents an engineeaing tool for design and simulation of control systems for processes
that are nonlinea and dfficult to model in a deductive fashion. The gproacd to the problem has been
the typicd system identification approad to model based control of an unknown process

1. System identificaion. |.e., infer a neural network model of the processto be controlled from a set of
data olleaed in an experiment with the process

2. Based on the identified model one or more antrollers are designed (these may be neura networks
as well). Run some simulations to tune the design parameters, and seled the aontroller that appeas
to be most suitable for the goplicaion.

3. Implementation on ared-time platform and application to red process
Obvioudly, in pradicethe threestages are not necessarily completely independent.

While the NNSY SID toolbox described in Nergaad (1995 was explicitly designed for solving the
system identification task, the NNCTRL toalkit has been developed to assst the control enginee in
solving the second task. The toalkit is developed in MATLAB due to the excdlent data visualizaion
feaures and its support for smulation of dynamic systems. In addition, it has been a mgjor motivation
that MATLAB is extremely popular in the ntrol engineeing community. Apart from the NNSY SID
toolbox the toalkit requires the Signal Processng toolbox provided by the MathWorks, Inc. Although
not a vital requirement it is also an advantage if SIMULINK" is available. If it is not present,
MATLAB’s built-in ODE solver is used instead.

The NNCTRL toolkit provides concepts where anetwork is used dredly as the ntroller as well as
indired designs that are based on a neural network process model. The cncepts supported by the
toolkit include: Dired inverse oontrol, internal model control, feedforward control, optimal control,
feaedbadk lineaization, nonlinea generalized predictive wntrol, and control based on instantaneous
lineaizaion. The toalkit is primarily intended to be used on time-invariant, single-input-single-output
(SISO) processes.

The NNCTRL toolkit has been given a flexible structure to acoommodate incorporation of the user’s
personal neural network architedures and control system designs. Since the etire toolkit has been
implemented as ordinary ‘m-files’ it is very easy to understand and modify the existing code if desired.
This is an attradive feaure if the designs provided in advance ae not considered sufficient for the
applications under consideration or if the user would like to test new ideas.

First the manual describes the fundamental program structure shared by the different neural network
based control systems and training algorithms. Subsequently an example is given of how the user

1. Tutorial

spedafies the design parameters asciated with a given application. Finaly the different functions in the
toolkit are presented by category in acerdance with the type of control system to which they belong.

1.1 THE BASIC FRAMEWORK

All the different control systems have been implemented within the same framework. This framework is
composed of different standard elements such as reading a design parameter file, variable initializaion,
generating a reference signal, process smulation, a constant gain PID controller, data storage, data
visualizaion, and more. The @ntrol systems can ke divided into two fundamentally different
caegories:

» Dired design: the @ntroller is diredly implemented by a neural network.

* Indired design: The wntroller is not itself a neural network but it is based on a neurd
network model of the process

The program structure is dightly different for ead of the two categories. To illustrate the difference
they are showninfig. 1 and fig. 2, respedively.

®| Design perameters |

@ Initializaions
Main loop begin Simulink, Matlab
Compute reference or neural net
Compute output from process modd
(Update weights)
Compute control
Time updates
Endloop
Plot simulation results

V&

Figure 1. Program structure for the dired design (i.e., the controller is a neural network). In some
cases it is possble to train the controller on-line andfor this reason astep called: “ updae weights’
has been included.

1-2

1. Tutorial

@| Design perameters |

@ Initiali zations
Main loop begin @ Simulink, Matlab
Compute reference or neurd net
Compute output from process model
Design controll er
Compute control
Time updates
Endloop
Plot smulationresults

v

Figure 2. Program structure for the indired design, i.e., when the controller is based on a reural
network model of the process

Eadh of the boxes in fig. 1 and fig. 2 spedfies a MATLAB script file or function. The three basic
components are:

A) A function describing the processto be mntrolled. The processcan be spedfied as a SIMULINK
model, a MATLAB function containing the differential equations, or a neural network model of the
process The Smulink and MATLAB options are of course only relevant when a mathematica
model of the processis available in advance

B) A MATLAB script file containing design parameters and variables to be initialized by the user. The
initiali zations that are typicdly required include: choice of reference signal, sampling frequency,
name of SIMULINK/MATLAB function implementing the process PID or neural network based
controller, design parameters for the controller. This file has a prespedfied name and format that is
associated with the type of control system. The name is always concluded by the letters init.m (e.g.,
invinit.min dired inverse control and npcinit.min nonlinea predictive antrol). A typicd NNCTRL
sesson is initiated by copying a “template” initialization file to the working dredory. This file is
then modified to comply with the gplication under consideration.

C) The main program which automaticdly reads the initidization file and smulates the process This
program usualy contains the letters con.m in its name to spedfy that it is the cntrol system
smulation program (for example invcon.m in dired inverse ontrol and optcon.m in optimal
control). It should be enphasized that the program structure does not always follow the patterns
shownin fig. 1 and fig. 2 exadly, but that small variations may occur.

1.2A TYPICAL INITIALIZATION FILE

During normal operation the user will only need to modify an initidizaion file containing the basic
design parameters and initializations for the smulation/training. More experienced users may also wish
to modify the ad¢ual smulation programs to incorporate their personal algorithms, but this topic is not
covered here. As an example of a typicd initiaizaion file, the file used for smulation of nonlinea
predictive control is giown on the following page. Subsequently the different design parameters are
discussed.

NNCTRL Todkit User’s Guide 1-3

1. Tutorial

1-4

% > NPCINIT.M <

% ---------- Switches -----------

regty ='npc’; % Controller type (npc, pid, none)

refty ='siggener’; % Reference signal (siggener/<var. name>)
simul ='simulink’; % Control object spec. (simulink/matlab/nnet)
% ---------- Initializations -----------

Ts=0.2; % Sampling period (in seconds)

samples = 300; % Number of samples in simulation

% -- System to be Controlled (SIMULINK) --
sim_model = 'spm1’; % Name of SIMULINK model

% --- System to be Controlled (MATLAB) --

mat_model = 'springm’; % Name of MATLAB model

model_out = 'smout’; % Output equation (function of the states)
x0 =[0;0]; % Initial states

% ----- Neural Network Specification ------

% "nnfile" must contain the following variables which together define
% an NNARX model:

% NN, NetDef, W1, W2

% (i.e. regressor structure, architecture definition, and weight matrices)

nnfile =‘forward’; % Name of file containing the neural network model

% ---m-mmeeee- Reference filter ---------------

Am =[1.0 -0.7]; % Denominator of filter

Bm = [0 0.3]; % Numerator of filter

% ---------- GPC initializations -----------

N1=1; % Minimum output horizon (must be equal to time delay!)
N2 =7, % Maximum output horizon (>= nb)

Nu =2; % Control horizon

rho = 0.03; % Penalty factor on differenced control signal

% -- Minimization algorithm initialzations -
% maxiter: Maxiumum number of Levenberg-Marquardt/Quasi-Newton iteratons.
% delta : If the 2-norm of the difference to the previous iterate is smaller

% than 'delta’, the algorithm is terminated.

% initval: A string which will be evaluated by npccon1/2. To avoid problems with
% local minima, different initial values of the most future component

% of the 'sequence of future controls' can be initialized differenly.

% l.e. the minimization algorithm is executed once for each element

% in 'initval’. Use initval = Jlupmin(Nu)]' as default.

maxiter = 5; % Max. number of iterations to determine u

delta = 1e-4; % Norm-of-control-change-stop criterion

initval = 'Tupmin(Nu)]’;

% ---m-mmme- Reference signal -------------

dc =0; % DC-level

sq_amp =3; % Amplitude of square signals (row vector)
sq_freq =0.1; % Frequencies of square signals (column vector)
sin_amp = [0]; % Amplitude of sine signals (row vector)
sin_freg= [0]'; % Frequencies of sine signals (column vector)
Nvar =0 % Variance of white noise signal

% -- Constant Gain Controller Parameters --

K=8; % PID parameters
Td=0.8; % PID

alf=0.1, % PID

Wi=0.2; % PID (1/Ti)

% ------ Specify data vectors to plot -------

% Notice that all strings in plot_a resp. plot_b must have equal length

plot_a(1,:) = 'ref data

plot_a(2,:) ='y_data ;
plot_b(1,:) = 'u_data’;

1. Tutorial

% ---------- Switches -----------

regty ='npc’ % Controller type (npc, pid, none)

refty ='siggener'; % Reference signal(siggener/<var.name>)
simul ='simulink’; % Control object spec.(simulink/matlab/nnet)

regty defines the type of controller. It is possble to make a @mplete open-loop smulation (* none’),
to use a onstant gain PID-controller (‘pid’) or, in this case, a generdized predictive aontrol design
based on a neural network predictor for the process(‘npc’).

refty defines the type of reference trgedory. It is possble to use asignal generator (‘siggener)
which can produce square waves, sinusoidals and white noise. Alternatively one can speafy the name
of a vedor containing the desired reference trgedory (for example, refty="myref). If the latter
option is used, the vedor must exist in the workspaceor be defined elsewhere in the initializaion file.

simul spedfies the “tool” used for modelling the process There ae threeposshilities: a SIMULINK
model (‘simulink’), aMATLAB model (* matlab’), or a neura network model (‘nnet’).

% ---------- Initializations ~ -----------
Ts=0.2; % Sampling period (in seconds)
samples = 300; % Number of samples in simulation

Ts isthe sampling period in seoonds and samples spedfies the the number of samples to be smulated.

% -- System to be Controlled (SIMULINK) --
sim_model = 'spm1’; % Name of SIMULINK model

If simul="simulink’ the program will smulate the “process’ spedfied in a SIMULINK diagram with
the name defined in sim_model . The SIMULINK block must have an inpat spedfying the input and
an outport spedfying the output, but apart from this there ae no constraints on how the model is built.
The picture below shows the SIMULINK model used in the demos:

1+

X2 1 x2=x1 1 y=x1
Inport s . .
Outport

Sum ntegratorl Integrator2

*

Product

NNCTRL Todkit User’s Guide 1-5

1. Tutorial

% --- System to be Controlled (MATLAB) --

mat_model = 'springm’; % Name of MATLAB model
model_out = 'smout’; % Output equation (function of the states)
x0 = [0;0]; % Initial states

If simul='matlab’ the program will simulate the “process’ defined by the two MATLAB files defined
in mat_model (the differential equations) and model_out (the output as a function of the states).

For example:

function xdot=springm(t,x)

global ugl;

xdot = [X(2) ; -x(1)-x(2)-x(1)*x(1)*x(1)+ugl];

and:

function y=smout(x);
y = x(1);

X0 isavedor speafying theinitial states.

It is important to include the global ugl; statement (ugl is dhort for “u gobal”) inthe MATLAB
function containing the differential equations describing the model. This is to comply with the format
required for passng the control signal to a function cdled by MATLAB's differential equation solver
00e45.

% ----- Neural Network Specification ------

% "nnfile" must contain the following variables which together define

% an NNARX model:

% NN, NetDef, W1, W2

% (i.e. regressor structure, architecture definition, and weight matrices)
nnfile = ‘forward', % Name of file containing the neural network model

The predictive mntroller requires a neural network model to predict the future outputs. This network
must be aNNARX (or NNOE) model creaed with the NNSY SID-toolbox. Regressor structure (NN ,
network architedure (NetDef) and weight matrices (W1 and W2 must be saved in afile. The name of
the file name must be spedfied in the variable nrifile. If neither a SIMULINK model nor a MATLAB
model of the processexists, the network model can also be used for smulating the process

Latest Breaking News. NNCTRL for MATLAB 5/SIMULINK 2:

New ordinary differential equation (ODE) solvers are supgied with MATLABS/SIMULINK 2 and the
cdl of these solvers from within MATLAB has been changed. If a SIMULINK function of the process
is available, the alditional variable ?? must be spedfied. This variable must contain the name of the
ODE solver.

% -- System to be Controlled (SIMULINK) --
integrator = 'ode45"; % Name of dif. eq. solver (f. ex. ode45 or odel5s)
sim_model ='spml’; % Name of SIMULINK model

Theredaer isreferred to the MATLAB manuals for more details on the different ODE solvers.

1-6

1. Tutorial

If amodel of the processis available only in MATLAB, the solver ‘ode45 has been preseleded. If the
user prefers another ODE solver the name of this $ould be inserted in the main program.

% -----m-m---- Reference filter ---------------
Am =[1.0 -0.7]; % Denominator of filter
Bm =[0.3]; % Numerator of filter

It is posgble to filter the reference trgjedory if desired. The filter’s transfer function is gedfied in the
polynomials A, and B, The spedfied choice orresponds to:

() = — o)
1-0.79
% ---------- GPC initializations -----------
N1=1; % Min. prediction horizon (must equal the time delay!)
N2 =7; % Max. prediction horizon (>= nb)
Nu = 2; % Control horizon
rho = 0.03; % Penalty factor on differenced control signal

%-- Minimization algorithm initialzations -
%maxiter: Maxiumum number of Levenberg-Marquardt/Quasi-Newton iteratons.
%delta : If the 2-norm of the difference to the previous iterate is smaller

% than 'delta’, the algorithm is terminated.

%initval: A string which will be evaluated by npcconl/2. To avoid problems with
% local minima, different initial values of the most future component

% of the 'sequence of future controls' can be initialized differenly.

% l.e. the minimization algorithm is executed once for each element

% in 'initval'. Use initval = Tupmin(Nu)]' as default.

maxiter = 5; % Max. number of iterations to determine u

delta = 1e-4; % Norm-of-control-change-stop criterion

initval = '[upmin(Nu)]’;

If the nonlinea generalized predictive mntrol strategy has been seleded by setting regty="npc’ the
design parameters must be spedfiedinN, N,, N,, and rho :

J (U () = Nz [rt+i)- gt +)] + pi[Au(t +i -1

The GPC-criterion can be minimized using two different schemes: a Quasi-Newton algorithm (obtained
by running the program npcconl) or a Levenberg-Marquardt algorithm (obtained by running npccon?).
maxiter ~ gpedfies the maximum number of iterations and delta defines the stopping criterion. The
criterion may have severa locd minima and consequently it may be desiredble to spedfy different
starting points for the minimizaion agorithm. This can be done in the vedor initval

NNCTRL Todkit User’s Guide 1-7

1. Tutorial

% ----------- Reference signal -------------

dc =0; % DC-level

sq_amp =[3]; % Amplitude of square signals (row vector)

sq_freq = [0.1]’; % Frequencies of square signals (column vector)

sin_amp = [O]; % Amplitude of sine signals (row vector)

sin_freq=[0]’; % Frequencies of sine signals (column vector)

Nvar =0 % Variance of white noise signal

If refty="siggener’ a smple signal generator is invoked to generate the reference trajedory. The

variables above define the trgjedory. It is posshle to crede atrgedory composed of severa square
waves and/or sinusoidals by defining sq_amp, sq_freq , sin_amp , and sin_freq asvedors.

% -- Constant Gain Controller Parameters --

K=8; % PID parameters
Td=0.8; % PID

alf=0.1,; % PID

Wi=0.2; % PID (1/Ti)

It is possble to use an ordinary PID controller instead of the predictive @ntroller. This is achieved by
setting regty="pid’ . The cntroller isimplemented as a discrete version of:

1+T;s 1+Ts
1+alf *T,s Ts

D(s)=K

% ------ Specify data vectors to plot -------
% Notice that all strings in plot_a resp. plot_b must have equal length

plot_a(1,:) = 'ref_data’;
plot_a(2,:) ='y_data
plot_b(1,:) ='u_data’;

Findly it is possbly to spedfy the signals to be plotted. The signals considered most interesting are
stored in vedors with names concluded by the letters * _daa’. For example, ref _daa spedfies the
reference y_daa the output signal and u_daa the wntrol signal. plot_a and plot_b are matrices of
strings which are evaluated by the program. For example, it is possble to write:

plot_b(1,:) ='3.5*u_data+10";

to plot a scded version of the @ntrol signal. Since the control system smulation programs are script-
files, al parameters, vedors, and matrices will be available in the workspacewhen the simulation is
completed and they can be used in further analyses. A typicd plot produced by the smulation program
is rown below.

1. Tutorial

Nonlinear Predictive Control
3 T T T

L L L
0 50 100 150 200 250
Samples

.
_15 L L L
0 50 100 150 200 250
Samples

NNCTRL Todkit User’s Guide 1-9

2 Control system design

In this chapter the antrol systems implemented in the NNCTRL toolkit are introduced. The control
systems provided are: dired inverse ontrol, internal model control, feedforward, control by input-
output lineaizaion, optimal control, approximate pole placenent control, minimum variance @ntrol,
predictive cntrol based on instantaneous lineaizaion, and nonlinea predictive control.

To experience the fedures of the different types of neural network based control it is often relevant to
investigate how the controllers perform on a well-known process In fad, this is one of the primary
purposes of this toolkit. For this reason it is possble to control models that are built in SIMULINK" or
differential equation models that are spedfied in MATLAB". Also it is posshle to simulate an
experiment with the processto aqquire aset of datafor system identification and controller design.

In the following sedions the different functions are discussed, starting with how to smulate an
experiment (if externaly generated data ae used, one can skip this sdion). Not al the options for the
different *init.m files will be discussed since they have agrea ded of overlap with one another and
with the one shown in the previous chapter.

21 SIMULATING THE EXPERIMENT

Experiment Simulation

experim Simulate experiment.
exXpinit File with design parameters for experim.

If the NNCTRL toolkit is used to gain experience with neural network based control or if a
rudmentary model of the processto be mntrolled exists, the experiment can be smulated using a
SIMULINK" or MATLAB" mode! of the process The experiment can be @mnducted in open-loop, but
if the processis poorly damped or unstable it is also possble to make the experiment in closed-loop
with a PID-controller (or an RST-controller).

2. Control System Design

Up
+
r + y
PID controller |—» System >
+ Ue u

Figure 3 Colleding dda in closed-loopwith aPID-controller.

A manually tuned PID-controller will often be designed somewhat conservatively - its primary
objedive is to stabilize the process It is therefore possble to add a signal (u,) diredly to the @ntrol
signal to ensure a cetain high frequency content in the data set. If the experiment is conducted in open-
loop it makes no difference whether r or U, is used as the reference signal.

The function experim smulates the experiment and the file expinit contains the initializaions to be
spedfied by the user. Some excerpts from the expinit file ae given below:

% ---------- Switches -----------

regty ='none’; % Controller type (rst, pid, none)

refty ='predef; % Reference signal (siggener/none/<var. name>)
probety ='none’; % Probing signal (none/<var. name>)

regty Spedfiesthe type of controller. regty="none’ impliesthat the experiment is conducted in open-
loop, regty="pid’ that the experiment is conducted in closed-loop with a PID-controller, and
regty="rst’ that the experiment is conducted in closed-loop with an RST-controller. The design
parameters of the PID and RST controllers are dso set in thefile:

% -------- Linear Controller Parameters ---------
K=8; % PID parameters
Td=0.8; % PID

alf=0.1; % PID

Wi=0.2; % PID (1/Ti)
r0=0.0609; % RST parameters
r1=0.0514; % RST

t0=0.2; % RST

s0=0.802; % RST

s1=-0.602; % RST

R =[r0 r1];

S =[s0 s1];

T =10;

refty seleds the type of reference signal (r) and probety the type of signal added dredly to the
control signal in a dosed-loop experiment (up). If refty="siggener’ the built-in signal generator is
used. If thisis not adequate it is possble to use asignal defined in a vedor which is available in the
workspace If the name of the vedor ismy_signal then set refty="my_signal’

2-2

2. Control System Design

2.2 CONTROL WITH INVERSE MODELS

Control with Inverse Models

general General training of inverse models.

speadall Spedalized badk-prop training of inverse models.

invinitl File with design parameters for spedall.

speaal2 Spedalized training with an RPLR type GaussNewton method.
speadal3 Spedalized training with an RPEM type GaussNewton method.
invinit2 File with design parameters for spedal2 and speaal 3.

invam Function for evaluating inverse models.

invcon Program for smulating dred inverse control.

invinit File with design parameters for invcon.

imcoon Program for smulating internal model control.

imcinit File with design parameters for imcoon.

ffcon Program for smulating processwith feedforward control.

ffinit File with design parameters for ffcon.

invtest Program for demonstrating dred inverse @ntrol.

Conceptually, the most fundamental neural network based controllers are probably those using the
“inverse” of the processas the controller. The most smple concept is cdled dired inverse control. The
principle of thisisthat if the processcan be described by:

y(t+1) = g(y(t),..., y(t —=n+2),u(t),...,u(t - m))

anetwork is trained as the inverse of the process
act) = g (y(t +1), y(t),..., y(t = n+1),u(t - 1), u(t — m))

The inverse model is subsequently applied as the mntroller for the proces by inserting the desired
output, the referencer(t+1), instead of the output y(t+1). There ae severd references available which
usethisideg e.g., Psdltiset al. (1988, Hunt & Sbarbaro (1991), and Hunt et a. (1992. See &so fig. 4.
Internal model control (IMC) and feedforward control represent other strategies that utilize inverse
models.

NNCTRL Todkit User’s Guide 2-3

2. Control System Design

-2
r(t+1) u(t) y(t+1)
s Process >

inverse

model

Figure4 Dired inverse cntrol.

Before ansidering the adual control system, an inverse model must be trained. Two strategies for
obtaining the inverse model are provided in the toolkit: generalized training and spedalized training
(Psdltis et a. 1988. In generalized training a network is trained off-line to minimize the following
criterion (8 spedfies the weights in the network):

N

3,6)= " (ut)-a)’

t=1

An experiment is performed and a set of corresponding inputs and outputs are stored. Subsequently the
function general, which applies a version of the Levenberg-Marquardt method (Fletcher, 1987, is
invoked.

Spedali zed training is an on-line procedure related to model-reference alaptive wntrol. The ideais to
minimizethe aiterion:

3,0)= 5 (Ya®) - ¥©)’
where

B,
An(a)

The inverse model is obtained if Ar=Br=1, but often a low-passfiltered version is preferred. In this
case the result will be some kind of “detuned” (or “smoothed”) inverse model.

Yalt) =

Spedalized training is often said to be god direded becaise it, as opposed to generalized training,
attempts to train the network so that the output of the processfollows the reference dosely. For this
reason, spedalized training is particularly well-suited for optimizing the cntroller for a prescribed
reference trgjedory. This is a relevant feaure in many robotics applicaions. Also it is with spedal
training posshle to make an inverse model for processes that are not one-to-one.

Spedalized training must be performed on-line and thus it is much more difficult to carry out in

pradice than generalized training. Before the adua training of the inverse model is initiated, a
“forward” model of the process must be trained since this is required by the scheme. This can be

2-4

2. Control System Design

creded with the NNSY SID toolbox from a data set colleded in an experiment performed in advance &
described in sedion 2.1. The principle is depicted in fig. 5.

Reference Ym
model
e
__________ NN
e, ’ forward mode | A’ +
y

v

r N
. Process
inver ge model
/ u y

Figure5 The principle of spedalized training.

Unlike generali zed training the controller design is model based when the speaalized training scheme is
applied since amodel of the processis required. Details on the principle can ke found in Hunt &
Sbarbaro (199]). Three different variations of the scheme have been implemented: One using a
reaursive bad-propagation agorithm for minimizing the aiterion (spedall) and two more rapid
methods using different variations of the reaursive GaussNewton agorithm (spedal2 and speaal 3).
Speaalized training is more cmplex to implement than generalized training and requires more design
parameters. For this reason it has not been implemented as MATLAB functions like generalized
training. The threevariations of the scheme ae instead implemented by the same type of combination
of script files and initialization files as was discussd in chapter 1.

The difference between spedal 1 and spedal2 on one side axd spedal3 on the other side lies in the
way the derivative of the process output with resped to the weights of the inverse model is
approximated. spedal 1 and spedal2 have beaen implemented in the spirit of reaursive “pseudo-linea
regresson” methods (Ljung, 1987 in the sense that the past outputs and past controls dependency on
the network weights is disregarded:

dy(t) _ oy(t) dutt-1) dy(t) out-1)
a6 oau(t-13 dob out-1) 06
speaal 3 is closer to the true reaursive prediction error method discussed in Ljung (1987%):
dy(t) _ _oy(t) du(t-1)
a6 oau(t-1) do
- N(t) Ek?u(t—l)+ ~ ou(t-1) d§/(t—i)+ = ou(t—21) du(t-i)C
m(t—l)B 00 ;&y(t—i) do ;m(t—i) do

w(t)=

w(t)=

In spedal2 and spedal3 the user can choose one of three updating formulas (see Astrom &
Wittenmark, 1995 Salgado et al, 1989):

NNCTRL Todkit User’s Guide 2-5

2. Control System Design

Exponential forgetting (method="1f"):
K(®) = Pt- DAl +@" OPE- Dy (t)”

B(t) = B(t - 1) + K(1)(y(t) - (1))
Pt =(P(t-)- KMy HPE-1) /4

Congtant-trace(method="ct’):
K(®) = Pt-Dw(®)A+@" OPE- ()

B(t) = B(t - 1) + K(t)(y(t) - $1(1))

P(t - Dty Pt - 1O /A

P(t) = @3('[-D+ 1+ T ()Pt - Dy (t)

— amax _amin D
P(t) = —tr(ﬁ(t)) Pt)+a,,,!

Exponentia Forgetting and Resetting Algorithm (method="efra’):
K(® = aP(t- Dy (1+¢ OPE-Dy(n)”

B(t) = B(t - 1) + K(t)(y(t) - $1(1))

P(t) :%P(t -D-K{M)y OPt-1D+pl - (t-1)

To illustrate how spedadized training is exeauted, some excerpts from the file invinit2 are shown
below. This file contains the design parameters for both spedal2 and spedal3. The file invinit1, which
contains the design parameters for speaal 1, has amost the same structure.

% ---------- Switches -----------

simul ='simulink’; % System specification (simulink/matlab/nnet)
method = "'ff'; % Training algorithm (ff/ct/efra)

refty ='siggener’; % Reference signal (siggener/<var. name>)
% ------ General Initializations -------

Ts =0.20; % Sampling period (in seconds)

samples = 200 ; % Number of samples in each epoch

2. Control System Design

method spedfies the training algorithm. The forgetting fador algorithm will usualy give the most rapid
convergence, but be avare of the possbility of covariance blow-up (Astrém & Wittenmark, 1995.

refty spedfiesthe type of referencesignal.

% ----- Neural Network Specification ------

%The "forward model file" must contain the following variables which together
% define a NNARX-model:

% NN, NetDeff, W1f, W2f

% and the "inverse model file" must contain

% NN, NetDefi, W1i, W2i

% (i.e. regressor structure, architecture definition, and weight matrices)
nnforw = ‘forward’; % Name of file containing forward model

nninv ='inverse’; % Name of file containing inverse model

nnforw should be set to the name of the file containing the achitedure definition and weight matrices
for a neural network model of the processto be cntrolled. This model is required to provide estimates
H(t)

au(t-1

nninv should be set to the name of afile containing the achitedure definition and the initial weight
matrices for the inverse neural network model. The weights can be initidized by random, but most
often it is better to make arough initidizaion using generalized training. When working in this way,
speaalized training can be cnsidered afine-tuning of the inverse model.

of the process Jacobian:

% -----m-m---- Reference Model ---------------
Am =[10.7]; % Model denominator
Bm =[0.3]; % Model nhumerator

When the ordinary inverse model is needed Am=1 and Bm=1 However, often it is preferred that the
closed-loop system follows a prescribed transfer function model. Amand Bm are then be set to the
desired closed-loop denominator and numerator, respedively.

maxiter = 8;
maxiter ~ spedfies the number of times that the reference trgjedory (of the length speafied in the

variable samples) is repeaed. The total number of times that the weights are updeted are thus
maxiter*samples

NNCTRL Todkit User’s Guide 2-7

2. Control System Design

% --- Forgetting factor algorithm (ff) ---

% trparms = [lambda p0]

% lambda = forgetting factor (suggested value 0.995)

% p0 = Covariance matrix diagonal (1-10)

%

% --- Constant trace algorithm (ct) ---

% trparms = [lambda alpha_max alpha_min]

% lambda = forgetting factor (suggested value 0.995)

% alpha_max = Max. eigenvalue of covariance matrix (100)
% alpha_min = Min. eigenvaule of covariance matrix (0.001)
%

% --- Exponential Forgetting and Restting Algorithm (efra) ---
% trparms = [alpha beta delta lambda]

% Suggested values:

% alpha=0.5-1

% beta =0.001

% delta =0.001

% lambda = 0.98

trparms =[0.995 10];

%trparms = [0.995 100 0.001];

%trparms = [1 0.001 0.001 0.98];

trparms IS a vedor containing the design parameters for the updete of the @variance matrix in the
reaursive GaussNewton algorithm. The content of this vedor depends of course on the seleded
updeting scheme (exponential forgetting, constant trace EFRA).

% ------ Specify data vectors to plot -------
% Notice that all strings in plot_a resp. plot_b must have equal length

plot_a(1,:) = 'ref data "
plot_a(2,:) ='y_data '
plot_a(3,:) ='yhat_data’;
plot_b(1,:) ='u_data’;

~—

Ead time the reference trgjedory has been applied once, a plot will appea on the screen with the
dgnals defined in plot_.a and plot_ b . The SE (sum-of-squared-errors) for the aror between
reference and output signal is written in the plot to give the user an indicaion of how the dgorithmsis
converging.

Once a inverse model has been trained there ae different ways in which it can be used for control.
The tooalkit provides threedifferent concepts:

Dired inverse @ntrol:
As the name indicaes the inverse model is diredly used as the controller:

u(t) =g (r(t+2), y(t),..., y(t =n+1),u(t - 1),u(t — m))

The principle was siownin fig. 4.

2. Control System Design

invoon is used for smulating the dosed-loop system while the design parameters are spedfied in the
fileinvinit. Some examples of design parametersto be initiaized in invinit are shown below:

% ---------- Switches -----------

regty ='dic’; % Controller type (dic, pid, none)

simul ='simulink’; % Control object spec. (simulink/matlab/nnet)

regty="dic’ means dired inverse wntrol. If regty="pid’ an ordinary PID-controller will be used
instead.

% ----- Inverse Network Specification ------

% The file must contain the variables:

% NN, NetDefi, W1i, W2i

% (i.e. regressor structure, architecture definition, and weight matrices)
nninv = 'inverse'; % Name of file

The variable nninv is st to the name of the file mntaining the regressor structure, architedure
definition and weight matrices for the neural network that is modelli ng the inverse of the process

% -----m-me--- Reference Filter ---------------
Am = [1]; % Filter denominator
Bm =[1]; % Filter numerator

Amand Bmdefines a filter that is used on the reference signal before it is applied to the inverse model. It
has nathing to do with the reference model used in spedalized training. An option to filter the
referenceis provided to avoid that the reference signal has alarge high frequency component.

Internal model control:

This design has been treaed in Hunt & Sbarbaro (1991). The wntrol signal is g/nthesized by a
combination of a “forward” model of the processand an inverse model. An attradive property of this
designisthat it provides an off-set freeresponse regardlessof whether or not the processis affeded by
a onstant disturbance The scheme is implemented in imccon and imcinit.

N

+
r(t) Filter NN-controller | u(t) Process y(®
‘>Q—> R ’ - (O)——s
+ F ¢ q P

NN-model (t) v

g [0

Figure6 Inverse model control (IMC).

Thefile imcinit is very similar to invinit. The differences are shown below:

NNCTRL Todkit User’s Guide 2-9

2. Control System Design

% ---------- Switches -----------
regty ='imc’; % Controller type (imc, pid, none)
regty must be set to imc ' to seled internal model control.

% ----- Inverse Network Specification ------

% The file must contain the variables:

% NN, NetDefi, W1i, W2i

% (i.e. regressor structure, architecture definition, and weight matrices)
nninv = ‘inverse3’; % File name

% ----- Forward Network Specification ------
% The file must contain: NN, NetDeff, W1f, W2f
nnforw = ‘forward’; % File name

A neura network model of the processis integrated in the @ntroller design as siown on fig. 6. If the
speaalized training scheme was used for creaing the inverse model, a model of the processis arealy
available. Otherwise anew model must be trained before the IMC concept can be used.

% Filter
Am =[1-0.7]; % Filter denominator
Bm =[0.3]; % Filter numerator

Amand Bmare denominator and numerator of the filter, F, shown in fig.6.

Feedforward

Using inverse models for feedbad control leads to a dead-bea type of control which is unsuitable in
many cases. If a PID controller has already been tuned for stabili zing the process an inverse model can
be used for providing a feedforward signa diredly from the reference This has been proposed in
Leunen (1993 and Sarensen (1994. The scheme is implemented in ffcon and ffinit.

NN
inver se model
Uyt
+
r + y
— PID controller ——» Process >
+
Urp u

Figure 7 Fealforward for optimization d an exsting control system.

2-10

2. Control System Design

An excerpt from the file ffinit is $rown below:

% ---------- Switches -----------
regty ='pidff % Controller type (pid, pidff, ff, none)

% -------- Linear Controller Parameters ---------
K=8; % PID parameters
Td=0.8; % PID

alf=0.1; % PID

Wi=0.2; % PID (1/Ti)

If regty="pid’ a aonstant gain PID controller is used with the parameters defined by K, Td, alf , and
Wi. If regty="ff the processis controlled in open-loop using the inverse neural network model as a
feedforward controller. regty="pidff combines the two so that the PID controller is used for
stabili zing the processand suppressng dsturbances while the feedforward is used for providing a fast
tracking of the reference

NNCTRL Todkit User’s Guide 2-11

2. Control System Design

2.3 FEEDBACK LINEARIZATION

Control by Feedback Linearization

fblcon Simulate control by feadbadk lineaization.
fbli nit File with design parameters for fblcon.
fbltest Program for demonstrating control by feedbadk lineaization.

Feadbadk lineaizaion is a cmmon method for controlling certain classes of nonlinea processes. The
toolkit provides a smple example of a discrete input-output lineaizing controller that is based on a
neural network model of the process The NNSY SID toolbox contains the function nniol to train a
neural network model that has the following structure:

9(t) = f(y(t=1),...,y(t =n),u(t = 2),...,u(t = m)) +
a(y(t-2,...,y(t —n),u(t = 2),...,u(t —m)u(t -2

f and g are two separate networks. A feedbad lineaizing controller is obtained by cdculating the
controls acording to:

_w(t) = f(y@t),...,y(t=n+1),u(t = 1),...,u(t - m+1))
a(y(t),....y(t—n+1),u(t - 1),...,ut —-m+1))

Seleding the virtual control, w(t), as an appropriate linea combination of past outputs plus the

reference enables an arbitrary assgnment of the dosed-loop poles. As for the model-reference

controller, feadbadk lineaizaion is thus a nonlinea counterpart to pole placenent with al zeros
cancded (seeAstrom & Wittenmark, 1995. The principle is depicted in Figure 8.

u(t)

r(t) w(t)-f(*) u(t-1) y(0)

Process >
a(*)

NN-2 I NN-1

9(°) f(*)
|

Figure 8 Discrete feedback linearization.

2-12

2. Control System Design

The design parameters must be spedfied in the file fblinit. An excerpt from the file is discussed below.

% ---------- Switches -----------
regty ='fbl’; % Controller type (fbl, pid, none)
regty="fol’ gives control by feadbadk lineaization.

% ----- Neural Network Specification ------

% "nnfile" must contain the following variables which together define

% the network model:

% NN, NetDeff, NetDefg, W1f, W2f, Wlg, W2g

% (i.e. regressor structure, architecture definitions, and weight matrices)
nnfile = 'net_file"; % Name of file

nnfile , which contains the regressor structure, architedure definition and weights of the neural
network, must in this case include seven different variables due to the somewhat spedal network
architedure. NN spedfies the regresors and is &t as for an NNARX model. NetDeff defines the
architedure of the network implementing f while NetDefg defines the achitedure of the network
implementing g. wif and w2f contain the weights for f while wigand w2gcontain the weights for g.

% ---- Desired characteristic polynomial ---
Am =[1-1.40.49]; % Characteristic polynomial

An contains the desired closed-loop charaderistic polynomial. In this case the polynomial has been
sdleded to A, (2) = Z° —14z+0.49 corresponding to two polesin z=0.7.

NNCTRL Todkit User’s Guide 2-13

2. Control System Design

24 OPTIMAL CONTROL

Optimal Control

opttrain Simulate wntrol by feedbad lineaizaion.

optinit File with design parameters for opttrain.

optcon Simulate optimal control of process(similar to invcon).
optinit File with design parameters for optcon.

opttest Program for demonstrating the optimal control concept.

A smple training algorithm for design of optimal controllers has been implemented by a small
modificaion of the spedalized training algorithm implemented in spedal2. The modificaion consists of
an additional term which is added to the aiterion to penalize the squared controls:

3,0)=5 (r)-y®) +pu®)’, p=20

The training of the network is very smilar to spedalized training of inverse models and is aso
performed on-line. As for spedalized training a “forward” model of the process must have been
identified with the NNSY SID toolbox in advance

The training is caried out with opttrain which implements a modified rearrsve GaussNewton
algorithm. For the sake of brevity let

oy(t)

et = a(t-1)

&(t)

du(t - 1)

W, (1) = 40

0
WO =280

The gradient is changed which manifestsitself in a new weight upcete:
0(t) =6(t-1) + Pty (t)(e,(t) - pu(t - 1)

The update of the inverse Hesgan is exadly the same & in the spedalized training scheme implemented
in spedal2. Naturaly, it is an approximation to use the same variance update(s) as in spedalized
training, but it appeas to work reasonably well.

2-14

2. Control System Design

The following variables must be set in optrinit before the training is garted:

% ---------- Switches -----------

simul ='simulink’; % System specification (simulink/matlab/nnet)
method = 'ff} % Training algorithm (ff/ct/efra)

refty ='siggener’; % Reference generation (siggener/<variable name>)

method spedfies the variation of the training algorithm (forgetting fador, constant trace EFRA).
refty spedfies the type of reference signal. Since this is an on-line scheme related to spedalized
training, it is excdlent for optimizing the wntroller for a prescribed referencetragjedory.

% ----- Neural Network Specification ------

% The "forward model file" must contain the following variables which
% define a NNARX-model:

% NN, NetDeff, W1f, W2f

% and the "controller network file" must contain

% NetDefc, Wilc, W2c

% (i.e. regressor structure, architecture definition, and weight matrices)
nnforw = ‘forward’; % Name of file containing forward model
nnctrl = 'initopt’; % Name of file containing initial controller net

Two files must be present (acually the same file can be used for both networks): nnforw is st to the
filename ntaining the network which models the process This network must be trained in advance
with the nnarx function in the NNSY SID toolbox. The variables defining the network must have the
names NN NetDeff , Wif, and W2f.

nnctrl contains the initial controller network. The network weights can for example be initialized with
the generaized inverse training scheme (function general). The variables defining the network must
have the names (NN) NetDefc , Wilg and W2c.

If desired, it is possble to filter the reference

% -----m-m---- Reference filter ---------------
Am =[1-0.7]; % Filter denominator
Bm =[0.3]; % Filter numerator

Amand Bmdo not spedfy areference model as in spedalized training. In this case they smply speafy a
filter to be used on the reference signal.

Most of the design parameters assciated with the training algorithm were discussed in the sedion
about spedadized training. In this case it is of course necessry to include an additional parameter,
namely p:

% -----m-m---- Training parameters -----------
maxiter = 7; % Maximum number of epochs
rho =1e-3; % Penalty factor on squared controls

NNCTRL Todkit User’s Guide 2-15

2. Control System Design

If rho=0 , the dgorithm degenerates to spedalized training and the inverse model is thus obtained.

When the oontroller network has been trained, the final network is gored in afile. optcon is then used
for smulating the dosed-loop system. This function is essentialy identicd to invcon except that the
design parameters must be defined in optinit and the names of the variables geadfying the controller
network must have different names.

2-16

2. Control System Design

25 INSTANTANEOUSLINEARIZATION

Control by Instantaneous L inearization

lincon Simulate control using approximate pole placement or minimum variance
lininit File with design parameters for lincon.

diophart Genera function for solving Diophantine equations.

dio Prepares problem for solution by diophart.

apcoon Simulate goproximate generaized predictive control.

apcinit File with design parameters for apcoon.

lintest Program for demonstrating approximate pole placanent control.

In Sgrensen (1994 a tedhnique for lineaizing neural network models around the airrent operating
point is given. The ideais simmarized in the following.

Asaume that a deterministic model of the process under consideration has been established with the
NNSY SID-toolbox:

y(t) =g(y(t =2),...,y(t = n),u(t = d),...,u(t —d - m))
The “state” ¢(t) isthen introduced as avedor composed of the aguments of the function g:
2t)=[yt-1) - yt-n) ut-d) - ut-d-m)]
At time t=T1 lineaize g around the aurrent state ¢(7) to obtain the gproximate model:
y(t) =-ay(t-1-...—a,y(t —n) +b,u(t - d)+...+b,U(t—d -m)

where
__9y(s(0))
N =Dl 5=
_ag(¢m)
Ut = d =Dl
and

y(t—i)=yt-i)-y(r-i)
Gt—i)=ut—i)-u(r -i)

NNCTRL Todkit User’s Guide 2-17

2. Control System Design

Seperating the portion of the expresson containing components of the airrent state vedor, the
approximate model may alternatively be written as:

y(t) = (L A(@ ™))y + g B(a ™)u(t) + (1)
where the biasterm, (1), is determined by
{(r) = y(r) +ay(r —=1) +---+a,y(r —n) —bu(r —d) —---—bu(r —d -m)

and

AQ)=1+aq +.+aq"

B(q™)=b, +bg+..+b,q™"
The gproximate model may thus be interpreted as a linea model affeded by an additional DC-
disturbance, (1), depending on the operating point.

It is graightforward to apply this principle to the design of control systems. The ideais illustrated in
Figure 9.

Linearized model parameters

Controller Extrad
design linear model

Controller
Parameters

Reference

’ Controller Process

’4" Input

Figure 9. Instantaneous linearization appied to control system design.

Output

Although the ontroller is not adaptive in the sense that it has been designed with time-varying
processes in mind, the cncept is closely related to the indired self-tuning regulator concept examined
in Astrom & Wittenmark (1999. Instead of reaursively estimating a linea model at ead sample, a
linea model is extracted from a nonlinea neural network model instead. The method is thus a type of
gain scheduling control where the schedule is infinite. Unlike the previousy mentioned concepts the
controller isin this case not direaly implemented by a neura network.

Approximate pole placement and minimum variance
Together lincon, lininit, and diophart have aopted the instantaneous lineaizaion principle for
redizaion of different controllers. Threedifferent controllers have been implemented.

* Pole placement with al zeros cancded. The zeos are cancded and the controller is designed to
make the dosed-loop system follow a prescribed transfer function model.

* Pole placement with no zeros cancded. Only the poles of the dosed-loop system are moved to
prescribed locations.

2-18

2. Control System Design

* Minimum Variance Based on the aaumption that the bias, {(1), is integrated white noise:

e(t)
)=—2
¢(1) A
minimizethe aiterion:

, the so-cdled MV1-controller has been implemented. This controller is designed to

y

J,(tut) = E{[y(t +d) - W(q‘l)r(t)]2 + o[Au(t)]?
where |; spedfies the information gathered upto timet:
I, ={y(t), y(t =1),...,y(0),u(t = 1),...,u(0)}
The functions dio and diophart are provided for solving the Diophantine equation.

An except of thefile lininit:

% ---------- Switches -----------
regty ='rst} % Controller type (rst/pid/none)
design ='ppaz’; % Controller design (ppnz/ppaz/mv1/off)

The pole placenent and minimum variance @ntrollers are d redized in the RST-controller structure
showninfig. 10. Unlessa constant gain Pl D-controller is desired, regty should thus be set to 'rst'

r(t)

1
— s T@H —+PQ—D R(@™Y) 10 System v

v

S

Figure 10 The RST-controller: R(q™)y(t) = T(q™)r(t) - S(q ™) y(t)

In Astrém & Wittenmark (1999 this type of controller structure is discussed thoroughly and the reader
is therefore refered to this book for supgementary information.

design spedfiesthe type of design, i.e., the implementation of the “design bock” in Figure 9:
design='ppaz’ gives pole placement with all the zeos cancded.

design="ppnz’ gives pole placement with no zeros cancded.

design=mvl givesthe MV 1-controller.

If apole placement design is sleded, the following design parameters must be spedfied. The reader is
referred to Astrom & Wittenmark (1995 for an explanation of the different polynomials (for
convenience the same notation is used here, except that Astrém & Wittenmark uses the forward shift
operator, g, rather than the delay operator, g*).

NNCTRL Todkit User’s Guide 2-19

2. Control System Design

% -- Design parameters in pole placement --

% deg(Am)=deg(A)+deg(Ar)

% deg(Ao)=deg(A)-1 if no zeros are cancled

% deg(Ao)=deg(A)-deg(B)-1 if all zeros are canceled
Am=[1.0-1.40.490]; % Denominator of desired model

Bm =[0.09]; % Numerator of desired model (starts in z*{-1})
Ao =[1]; % Observer polynomial
Ar=[1-1]; % Pre-specified factor of R. Ar MUST contain

% [1 -1] as a factor (=integrator).
As =1, % Pre-specified factor of S (e.g., notch filter)

Am Bm Ao, Ar, and As are dl polynomials in g*. Bmis only used if the zeos are canceled. If no zeros
are cancded the open-loop zeros are retained and the @mntent of Bmis ignored. However, the DC-gain
is modified to ensure aunity gain at DC.

Inthe MV 1 design it isonly necessary to spedfy the penalty fador, o
% -------- Design parameters in MV1 --------
delta = 0.002; % Penalty on squared differenced controls

The polynomials Am Bm Ao, Ar, and As are not used at al and do not have to be set.

Approximate GPC:
The ideabehind generalized predictive control (GPC), which is redized by apccon and apcinit, is to at
ead iteration minimize a citerion of the following type:

J (U () = __sz[r(t +i) = gt +i)[F + pNZ[Au(t +i-1J

with resped to the N, future controls
U@ =[u®) ... ut+N,-1]

and subjed to the mnstraint
Au(t+i)=0, N,<i<N,-d

N: denotes the minimum prediction (or costing) horizon, N, the maximum prediction (or costing)
horizon, and N, the (maximum) control horizon. p is a weighting fador penalizing variations in the
controls. {(1) is modelled as integrated white noise and the predictions of future outputs, y(t+i), are
determined as the minimum variance predictions. The optimization problem (which must be solved on-
line since anew linea model is obtained at eat sample) results in a sequence of future @ntrols, U(t).
From this squence the first component, u(t), is then applied to the process Nergaad et a. (1996
detail s the derivation of the controller.

2-20

2. Control System Design

The design parameters for the gproximate GPC are relatively straightforward to initidize The
following is an excerpt from the file apcinit. Compare this to the definition of the GPC-criterion Js.

% ---------- Switches -----------

regty ='apc’ % Controller type (apc, pid, none)

% ---------- APC initializations -----------

N1=1; % Minimum prediction horizon (typically=nk)
N2 =7; % Maximum prediction horizon (>= nb)

Nu = 2; % Control horizon

rho = 0.03; % Penalty on squared differenced controls

NNCTRL Todkit User’s Guide 2-21

2. Control System Design

2.6 NONLINEAR PREDICTIVE CONTROL

Nonlinear Predictive Control

npcconl Simulate NPC using a Quasi-Newton method.

npccon2 Simulate NPC using a Newon based L evenberg-Marquardt method.
npcinit File containing the design parameters.

predtest Program for demonstrating generalized predictive @ntrol.

The instantaneous lineaization tednique has mMe shortcomings when the nonlineaities are not
relatively smooth. Unfortunately, pradicdly relevant criteria based design methods founded dredly on
a nonlinea neural network model are few. One of the most promising methods is nonlinea predictive
control, which is based on the aiterion Js defined above. However, in nonlinea predictive wntrol the
prediction of future outputs is not obtained through a lineaizaion, but from succesive reaursive use of
anonlinea NNARX model:

Y(t+Kt) = g(y(t +k-1),...,9(t +k=min(k,n)), y(t),..., y(t - max(n - k,0)),
u(t—d+Kk),...,ut—d -m+Kk))

The optimization problem is in this case much more difficult to solve and an iterative seach method is
required. The reader is referred to Nergaad (1996 for a derivation of the control law and for a
discusson of relevant optimizaion agorithms. The toadlkit offers two different algorithms for solving
the problem: A Quasi-Newton method applying the BFGS-agorithm for updating the inverse Hessan
and a Newton based Levenberg-Marquardt method.

An excerpt from the file npcinit.m shows that most design parameters are similar to apcinit.m:

% ---------- Switches -----------
regty ='npc’; % Controller type (npc, pid, none)

% ---------- GPC initializations -----------

N1=1,; % Min. prediction horizon (Must equal the time delay)
N2 =7; % Max. prediction horizon (>= nb)

Nu=2 % Control horizon

rho = 0.03; % Penalty on squared differenced controls

% -- Minimization algorithm initializations -

maxiter = 5; % Max. number of iterations to determine u
delta = 1e-4; % Norm-of-control-change-stop criterion
initval = "Tupmin(Nu)]’;

2-22

2. Control System Design

Different design parameters edfy how the optimization should be performed. The default values
shown in the excerpt will work for most applicaions, but sometimes it can be necessary to modify
them.

maxiter IS of course the maximum number of iterations. maxiter=5 is usualy appropriate. A smaller
value implies that the smulation runs faster while abigger value implies an enhanced acairacy.

delta is essentialy another stopping criterion. If the length of the vedor obtained by subtrading the
previous iterate from the airrent is snaler than delta : |U‘i)(t) -y (t)| <ddta the airrent iterate is
accepted asthe fina one.

initval IS avedor that has been introduced becaise it may happen that the aiterion to be minimized
(Js) has more than one locd minimum. Sincethe aiterion is minimized iteratively an initial guesson the

sequence of future wntrols, U (t) =[u‘°) ®),u?(t+1),...,u@(t+N, —1)], is required. If the aiterion

has more than one locd minimum it is desiredble to exeaute the optimizaion algorithm nore than once
to find the global one, starting from different initializations of U(t). npcoon1 and npcoon2 have been
implemented in such a way that the first N,-1 controls are taken from the final iterate on U(t-1),
determined in the previous smple. The vedor initval ~ then contains the initial guesges) on u(t+ N,-
1). initval has been implemented as a “string vedor” to make it possble that expressons can be

written in the veador. The default choiceisinitval = ‘Jupmin(Nu)]' which implies that
U@ (1) =[uff™ @), uf™ ¢ +2),...,uT e+ N, = 2), 7™ (¢ + N, ~2)] is used (the final control in the
vedaor U)(t-1) is repeaed). The coice initval=upmin(Nu) 5] implies that the dgorithm is

exeauted twice and that the starting point the second time is
U () =[uff™ @), ulf @ +2),...,uT (t+N, - 2) 5|

Optimization System

v

Figure 11 Nonlinear predictive ontrol. The ntroller is an iterative optimization scheme.

NNCTRL Todkit User’s Guide 2-23

References

R. Fetcher (1987: “ Practical Methods of Optimization,” Wiley, 1987

A. Grace A.J. Laub, JN Little, C.M. Thompson (1992: “ Control System Toolbox User’s Guide,”
The MathWorks, Inc.

K.J. Hunt, D. Sbarbaro (1991): “ Neural Networks for Nonlinear Interna Model Control,” IEE
Procealings-D, Vol. 138 No. 5, pp. 431-438

K.J. Hunt, D. Sbarbaro, R. Zbikowski, P.J. Gawthrop (1992: “ Neural Networks for Control Systems -
A Suvey” Automatica Vol. 28, No. 6, pp. 10831112

W.T. van Luenen (1993: “Neural Networks for Control: on Knomeige Representation and
Learning,” Ph.D Thess, Control Laboratory of Eledricd Engineaing, University of Twente,
Enschede, the Netherlands.

L. Ljung (198%:" System Identification - Theory for the User,” Prentice-Hall, 1987

M. Negrgaad (1999: “ Neural Network Based System Identification Todbox,” Ted. report 95-E-773
Department of Automation, Tedhnicd University of Denmark.

M. Nergaad, P.H. Serensen (1995: “ Generalized Predictive Control of a Nonlinear System using
Neural Networks,” Preprints, 1995 International Symposium on Artificial Neural Networks,
Hsinchu, Taiwan, ROC, pp. B1-33-40.

M. Negrgaad (1996: “ System ldentification and Control with Neural Networks,” Ph.D. thess,
Department of Automation, Tedhnicd University of Denmark.

M. Negrgaad, P.H. Sgrensen, N.K. Poulsen, O. Ravn, & L.K. Hansen (1996: “ Intelli gent Predictive
Control of Nonlinear Processes Using Neural Networks,” submitted for the 11th IEEE Int.
Symp. on Intelligent Control (I1SIC), Deaborn, Michigan, USA.

D. Psdltis, A. Sideris, A.A. Yamamure (1989: “ A Multil ayered Neural Network Cortroller,” Control
Sys. Mag., Vol. 8, No. 2, pp. 17-21.

M.E. Salgado, G. Goodwin, R.H. Middeton (1988: “Modfied Least Squaes Algorithm
Incorporating Exporential Forgetting andResetting,” Int. J. Control, 47, pp. 477491

J. §oberg, H. Hjamerson, L. Ljung (1994:“ Neural Networks in System Identification,” Preprints
10th IFAC symposium on SY SID, Copenhagen, Denmark. Vol.2, pp. 49-71, 1994

O. Sarensen (1994:“ Neural Networks in Control Applications,” Ph.D. Thesis. Aalborg University,
Department of Control Engineaing, 1994

K.J. Astrom, B. Wittenmark (1999: “ Adaptive Control,” 2nd. Edition, Addison-Wesley.

