Neural Network Based
System | dentification

TOOLBOX

For Use with MATLAB"

y(t-2)

9
A
\)

///‘\
R
004
AN

}

i

3

y(t-1)

u(t-2)

M
%

‘\\\’
[}9

u(t-1)

M agnus Ngrgaard 01U

Department of Automation ==
Department of Mathematical Modelling

Technical Report 97-E-851, Department of Automation
Tednical University of Denmark

ReleaseNotes

Neural Network Based
System Identification Toolbox

Version 1.1

Department of Automation, Technical University of Denmark, June 16, 1997

This note ntains important information on how the present toolbox is to be installed and the
conditions under which it may be used. Please rea it carefully before use.

The note should be sufficient for being able to make the esentia portion of the toolbox functions
work properly. However, to enhance performance anumber of functions have been rewritten in C
and in order to compile these, it is necessary to real the information about CMEX files found in the
Matlab External InterfaceGuide a well as to have some familiarity with compiling C programs.

NEW IN VERSION 1.1
A few bugs have been fixed and the following six functions have been included in the new version

igls. Iterated generalized least squares training of multi-output networks
nnarxm: | dentify a multi-output neural network ARX (or AR) model.

nnigls: Iterated generalized LS training of multi-output NNARX models
kpredict: k-step ahea prediction of the network output.

nnloo: Leave-One-Out estimate of generaizaion error for NNARX models
xoorrel: High-order crosscorrelation functions.

In addition to this the toolbox has also been ported to MATLAB 5.

INSTALL ING THE TOOLBOX

° The toolbox is provided in two versions. One for MATLAB 4.2 an one for MATLAB
5. Both versions have been tested under UNIX on a HP9000735and MATLAB 4.2c.1
for WINDOWS 3.1/95 on an IBM compatible PENTIUM.

Due to a bug in the “fprintf” function in MATLAB 4.2 for MS-Windows, many of the
functions will generate avery inconvenient output in the MATLAB command window.
If thisisto be avoided, replace“\r” intheline:

fprintf(‘iteration # %i Pl = %4.3\r',iteration-1,Pl);

with “\n” in the m-files batbp, incbp, marg, marq2, marglm, nnamaxl, nnarmax2,
nniol, nnoe, nnssf, nnrarmx1, mnrarmx2, rpe. (it is aways close to line 10 from the
bottom). The problems dould have been correded in verson 5. On UNIX systems
there should not be any such problems (it is also thought that the toolbox can be used
on Maantosh computers).

The signal processng toolbox is required by the validation functions (nneval, nnvalid,
ifvalid) to compute the @rrelation functions. Otherwise no additional toolboxes sould
be necessary.

All toolbox functions are implemented as plain m-files, but to enhance performance
CMEX dugicaes have been written for some of the most important functions. In the
MATLAB 4.2 version the Mak€fil e contains the cmmands necessary for compiling the
C-routines. If one is running MATLAB under HP-UX, it should be possble smply to
write

>> Imake

in the MATLAB command window to invoke the compiler. If one is working on
another platform it will be necessary to modify the Makefile acordingly. It is grongly
recommended that the compilation be optimized with resped to exeaution speal as
much as the compiler permits. Under MATLAB 5 it might be necessary to copy the file
mexopts.sh to the working dredory and modify it appropriately (ANSI C + max.
optimization. To compile the MEX filesunder MATLAB 5 just type

>> makemex

inthe MATLAB command window.

USING THE TOOLBOX

o

The deds for incorred functions cdls are not very thorough and consequently
MATLAB will often respond with quite incomprehensible eror messages when a
function is passd the wrong arguments. When cdling a CMEX-function, it may even
cause MATLAB to crash. Hence, when using the CMEX functions it may be agood
ideato make extra mpies of the m-files they are replaang (do not just rename the m-
files sncethey are till read by the “help” command). One can then start by cdling the
m-functions first to make sure the cdl is corred.

The functions have been optimized with resped to speed rather than memory usage.
For large network architedures and/or large data sets, memory problems may thus

occur. If one is running the student edition of MATLAB one will almost certainly run
into problems due to the rather small maximum size of the matrices allowed.

CONDITIONS DISCLAIMER
By using the toolbox the user agrees to all of the following.

° If oneis going to publish any work where this toolbox has been used, please remember
it was obtained free of charge and include areference to this tedhnicd report (M.
Negrgaad:”Neural Network Based System Identification Toolbox,” Tedh. Report. 97-
E-851, Department of Automation, Tedhnicd University of Denmark, 1997).

° Magnus Ngrgaad and Department of Automation do not offer any support for this
product whatsoever. The toolbox is offered freeof charge - take it or leave it!

° The toolbox is copyrighted freewvare by Magnus Nergaad/Department of Automation,
DTU. It may be distributed fredy unmodified. It is, however, not permitted to utilize
any part of the software in commercial products without prior written consent of
Magnus Norgaad, The Department of Automation, DTU.

° THE TOOLBOX IS RROVIDED “ASIS” WITHOUT WARRENTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRENTIES OR CONDITIONS OF MECHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MAGNUS
NZRGAARD AND/OR THE DEPARTMENT OF AUTOMATION BE LIABLE
FOR ANY SFECIAL, INCIDENTAL, INDIRECT, OR QGONSEQUENTIAL
DAMAGES OF ANY KIND, OR DAMAGES WHATSOEVER RESULTING FROM
LOSSOF USE, DATA, OR PROFITS, WHETHER OR NOT MN/IAU HAVE BEEN
ADVISED OF THE POSSBILITY OF SUCH DAMAGES, AND/OR ON ANY
THEORY OF LIABILITY ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

MATLAB isatrademark of The Mathworks, Inc.
Borland C++ is atrademark of Borland I nternational.
MS-Windows is a trademark of Microsoft Coporation.

Trademarks of other companies and/or organizaions mentioned in this documentation appea for
identification purposes only and are the property of their respedive companies and/or organizéations.

ACKNOWLEDGEMENTS

The author wish to adknowledge Assciate Professors Elbert Hendricks, Paul Hasse Serensen, and
Ole Ravn from the Department of Automation and Niels Kjelstad Poulsen from the Department of
Mathematicd Modelling for “beta testing” the toolbox and for giving invaluable mmments on

preprints of the manual. Furthermore, as it adso is clea from the referencelist, the basis for most of
the work comes from discussons with members of the neural network group, Eledronics Institute
(now Department of Mathematicd Modelling), who have provided grea insight into neural network
theory. Some parts of the toolbox were developed duing a stay at the Neuro-Engineeing Group,
NASA Ames Reseach Center, and the group members are gratefully adknowledged for their many
comments on the toolbox.

June 16, 1997

Magnus Nergaad

Department of Automation, Building 326
Tednicd University of Denmark
2800Lyngby

Denmark

e-mail: pmn@iau.dtu.dk

1 Tutorial

The present toolbox: “Neural Network Based System Identification Toolbox”, contains a large
number of functions for training and evaluation of multilayer perceptron type neura networks. The
main focus is on the use of neura networks as a generic model structure for the identification of
nonlinea dynamic systems. The System Identificaion Toolbox provided by The MathWorks, Inc.,
has thus been a major source of inspiration in constructing this toolbox, but the functions work
completely independent of the System Identification Toolbox as well as of the Neural Network
Toolbox (also provoded by the MathWorks, Inc.). Although the use in system identification will be
emphasized below, the tools made available here can also be used for time-series analysis or smply
for training and evaluation of ordinary feed-forward networks (for example for curve fitting).

This chapter starts by giving a brief introduction to multilayer perceptron retworks and how they
may be trained. The rest of the tutoria will then addressthe nonlinea system identification problem,
and a number of functions supporting this application are described. A small demonstration example,
giving an ideaof how the toolbox is used in pradice oncludesthe chapter. A reference guide which
detail s the use of the different functionsis given in chapter 2.

It should be enphasized that this is not a text book on how to use neura networks for system
identification. A good understanding of system identification (seefor example Ljung, 1987 and of
neural networks (see Hertz @ a., 1991 or Haykin, 1993, are important requirements for
understanding this tutorial. The manual could have been written in more textbook like fashion, but it
is the author’s conviction that it is better to leare dementary issues out to motivate the reader to
obtain the necessary insight into identification and neura network theory before using the toolbox.
Understanding is the best way to avoid that working with neural networks becomes a “fiddlers
paradise”!

Neural Network Based System I dentification Toolbox User’s Guide 1-1

The Multil ayer Perceptron

1 The Multilayer Perceptron

The Multilayer Perceptron (or MLP) network is probably the most often considered member of the
neural network family. The main reason for thisis its ability to model smple & well as very complex
functional relationships. This has been proven through a large number of pradicd applicaions (see
Demuth & Bede, 1993.

A fully conneded two layer feadforward MLP-network with 3 inputs, 2 hidden units (also cdled
“nodes’ or “neurons’), and 2 outputs units.

The dassof MLP-networks considered here is furthermore @nfined to those having only one hidden
layer and only hyperbolic tangent and linea adivation functions (f,F):

. a] a m O]
¥ (w, W) = EéiV\éjhj(W)"'WoD: Eé\/\ﬁ f,ﬁzwﬁ +WjoH+Wo 0
= U = = U

The weights (spedfied by the vedor 8, or adternatively by the matrices w and W) are the ajustable
parameters of the network and they are determined from a set of examples (or redizaions) through
the processcdled training. The examples, or the training data & they are usualy cdled, are aset of
inputs (u(t)) and corresponding desired outputs (y(t)).

Speafy the training set by:

z" ={[u).,y®)] [t=1...,N}

The objedive of training is then to determine amapping from the set of training data to the set of
possble weights:

VAN
so that the network will produce predictions y(t), which in some sense ae “close” to the true
outputs y(t).

1-2

The Multil ayer Perceptron

The prediction error approach, which is the strategy applied here, is based on the introduction of a
measure of closenessin terms of a mean square aror criterion:

1 N
V,(6,2") = — t) = 9(t|0)) " (y(t) - y(t}p
n(©.Z7) 2N;(y() §(t6))" (y(t) - 9(t1B))
The weights are then found as:
6 = arg min V, (6, Z")
[¢]

by some kind of iterative minimization scheme:

g =90 4 OO

8" spedfiesthe current iterate (number i), f isthe search dredion, and pu"” the step size.

A large number of training agorithms exist, eat of which is charaderized by the way in which
seach diredion and step size ae seleded. The toolbox provides the following algorithms:

General Network Training Algorithms
batbp Batch version of the Badk-propagation algorithm.
igls Iterated generalize Least Squares training of networks with multiple outputs.
incbp Reaursive (/incremental) version of Badk-propagation.
marq Basic Levenberg-Marquardt method.
margim Memory-saving implementation of the Levenberg-Marquardt method.
rpe Reaursive prediction error method.

All functions require the following six arguments when cdled:

NetDef : A “string-matrix” defining the network architedure:
NetDef=['HHHHHH’
‘LH----];
spedfies that the network has 6 tanh hidden units, 1 linea, and 1 tanhoutput unit.
wl, w2 : Matrices containing initial weights (typicdly seleaed by random).

PH : Matrix containing the inputs.
Y: Matrix containing the desired outputs.
trparms: Vedor containing dfferent parameters associated with the training. The wntent of the

vedor varies from function to function and is briefly discussed below. More
information is found in the reference guide (chapter 2).

For example the function cdl
>> [WLW2,crit_vedor,iter] =batbp(NetDef,wl,w2,PHI,Y,trparms)

Neural Network Based System I dentification Toolbox User’s Guide 1-3

The Multil ayer Perceptron

will train a network with the well-known back-propagdion dgorithm. This is a gradient descent
method taking advantage of the speda strucure the neural network in the way the computations are
ordered. For batbp the vedor trparms contains four elements:

trparms=[1000 -4 001 Q

This means that the maximum number of iterations is 100Q that the training should stop if the value
of the aiterion function Vi gets below 10% that the step size is 0.01 and that the so-cdled
momentum term is turned off (see Hertz & al., 1991). The batbp-function will return the trained
weights, (W1,W2), a vedor containing the value of Vy for ead iteration, (crit_vedor), and the
number of iterations adually exeauted, (iter). The dgorithm is currently the most popular method for
training networks, and it is described in most text books on neura networks (seefor example Hertz
et a. (1991). This popularity is however not due to its convergence properties, but mainly to the
simplicity with which it can be implemented.

A GaussNewton based Levenberg-Marquardt method is the standard method for minimizaion of
mean-sgquare @ror criteria, due to its rapid convergence properties and robustness A version of the
method, deaibed in Fletcher (1987, has been implemented in the function marg:

>>[WL,W2,crit_vedor,iter,lambda =marg(NetDef,wl,w2,PHI,Y,trparms)

The difference between this method and the one described in Marquardt (1963 is that the size of the
elements of the diagonal matrix added to the GaussNewton Hessan is adjusted acerding to the size
of the ratio between adual deaease and predicted deaease:

i 2 W(@2,2") -V (Y + 10, 2")
VN(e(i),ZN)— LO@D + £O)

where
| AN ol Loy(]6)
LOY + f) =Y O(t) - 9(te) - 7 Earves
;D 0 00 o

=\, (89,Z") + fTG(e") +% FTROM) f

G here denotes the gradient of the aiterion with resped to the weights and R is the so-cdled Gauss
Newton approximation to the Hessan.

The dgorithm is as follows:
1) Creae an initial parameter vedor 8° and an initial value A
2) Determine the search direction from [R(e‘i)) +A0] £ =-G(0"), | being aunit matrix.

3) r>075 O A9 =AD/2 (If predicted deaeae is close to adua deaease let the seach
diredion approach the GaussNewton seach diredion while increasing the step size)

1-4

The Multil ayer Perceptron

4) r% <025 O AV =2\Y(If predicted dearease is far from the adua deaeae let the search
direcaion approad the gradient diredion while deaeasing the step size)

5) If V(8" + 1", z") <V, (8",Z") thenaccet 8/ = 8" + f") asanew iterate and
let AT = \D and i=i+1.

6) If the stopping criterion (i >= maximum no. iterationsor V, (8", Z") < error boung is not
satisfied go to 2)

The cdl is esentidly the same & for the badk-propagation function, but the vedor trparms is now

somewhat different. First of al it contains the alditional parameter A® but the function hes
furthermore been implemented so that it can minimize citeria aigmented with aregularization term:

Wa(8,2") = -y () - 916)) () - 9(18) + 67 DB

The matrix D is a diagonal matrix, which in its commonly is sleded to be D=al . For a discusson
of regularizaion by simple weight decay, seefor example Larsen & Hansen (1994, Sj6berg & Ljung
(1992.

Choosing trparms = [200 le-4 1 le-5] means that the dgorithm will run to a maximum 200
iterations, that the eror bound is 10, A(© =1, and that D=10°xI. By cdling marq with trparms =
[200 -4 1 (, regularizaion is switched off. trparms= [200 Jle-4 1 le-5 le-4] hasthe dfed that a
weight decay of 10* is used for the input-to-hidden layer weights, while 10° is used for the hidden-
to-output layer weights. The initial value of A is not a particularly criticd parameter since it is
adjusted adaptively and thus will only influence the initia convergence rate: if it is too large, the
algorithm will take small steps and if it istoo small, the dgorithm will have to increase it until small
enough steps are taken.

batbp and marq both belong to the dass of so-cdled batch methods (meaning “all-at-once”) and
hence they will occupy a large quantity of memory. An alternative strategy is to repea a reaursive
(or “incremental”) algorithm over the training data anumber of times. Two functions are available in
the toolbox: incbp and rpe.

The cd
>> [WLW2,PI_vedor,iter] =rpe(NetDef,wl,w2,PHI,Y,trparms,method)

trains a network using areaursive GaussNewton like method as described in Ljung (1987). Different
updktes of the mvariance matrix have been implemented:

Exponential forgetting (method="1f"):
K(t) = Pt-Dy®(Al +p" ()Pt -Dy() "

B(t) = 6(t — 1) + K(t)(v(t) - 9(t))

Neural Network Based System I dentification Toolbox User’s Guide 1-5

The Multil ayer Perceptron

P =(P(t-D-K®OW OPt-1) 4
Congtant-trace(method="ct’):
K(t) = P(t-Dy®)(1+ W ()PE-Dw()

B(t) = B(t — 1) + K(t)(¥(t) - 9(t))
P(t) =Pt-1)- KOy (PEt-1)

— amax _amin D _
P(t)_ tr(ﬁ(t)) P(t) aminl

Exponential forgetting and Resetting Algorithm (method="efra’):
K(t) = aP(t-Dy@)(1+ W (OPE-Du() "

B(t) = B(t — 1) + K(t)(¥(t) - 9(t))

P(t) = % P(t-1)- KOy (t)P(t-1) + Bl —dP?(t—1)

For neural network training, exponential forgetting is typicdly the method gving the fastest
convergence. However, due to the large number of weights usually present in a neura network, care
should be taken when choosing the forgetting fador sinceit is difficult to ensure that al diredions of
the weight spacewill be properly excited. If A is too small, certain eigenvalues of the mvariance
matrix, P, will i ncrease uncontrollably. The constant trace ad the EFRA method are wnstructed so
that they bound the agenvaues from above & well as from below to prevent covariance blow-up
without loss of the tradking ability. Since it would be very time nsuming to compute the
eigenvalues of P after ead update, the functions does not do this. However, if problems with the
algorithms occur, one can chedk the size of the egenvaules by adding the command eig(P) to the end
of the rpe-function before termination.

For the forgetting fador method the user must speafy an initial “covariance matrix” P(0). The
common choice for this is P(0)=cx 1, ¢ being a "large" number, say 10 to 10*. The two cther

methods initialize P(0) as a diagonal matrix with the largest alowable agenvalue & its diagonal
elements. When using the @nstant tracemethod, the user speafies the maximum and the minimum
eigenvalue (Omn, Omax) diredly. The EFRA-algorithm requires four different parameters to be
seleded. Salgado et al. (1988 give valuable supdementary information on this.

For multivariable nonlinea regresson problems it is useful to consider a weighted criterion like the
following:

Vi (6,2%)= % Z (y(®) - §(16)" A (y(t) - y(tp))

1-6

The Multil ayer Perceptron

As explained previoudy al the training agorithms have been implemented to minimize the
unweighted criterion (i.e., A is dways the identity matrix). To minimize the weighted criterion one
will therefore have to scade the observations before training. Fadorize A =3"% and scde the
observations as y(t) = Zy(t) . If the network now is trained to minimize

v, (6,2") =%Z(V(t)—§7(t|9))T(V(t)—§7(t|9))

the network output (f/(t)) must subsequently be rescded by the operation y(t) = Z‘lf/(t). If the
network has linea output units the scding can be build into the hidden-to-output layer matrix, W2,
direaly: W=3"W .

Since the weighting matrix is easly fadorized by using the MATLAB command sgrtm it is
straightforward to train networks with multiple outputs:

>>[WL,W2,crit_vedor,iter,lambda =marq(NetDef,wl,w2,PHI,sgrtm(inv(Gamma))* Y,trparms);
>> W2=sgrtm(Gamma)* W2;

If the noise on the observations is white and Gassan distributed and the network architedure is
complete, i.e., the achitedure is large eough to describe the system underlying the data, the
Maximum Likelihood estimate of the weights is obtained if A is sleded as the noise @variance
matrix. The covariance matrix is of course unknown in most cases and often it is therefore estimated.
In the function igls an iterative procedure for network training and estimation of the variance
matrix has been implemented. The procedureis cdled Iterative Generalized Least Squaes

>> [WL,W2]=marq(NetDef, W1,W2,PHI,Y,trparms);
>> [WLW2,lambda Gamma] =igls(NetDef, W1,W2,trparms,repeat, GamnaO,PHI,Y);

The function outputs the scded weights and thus the network output (or the weights if the output
units are linea) must be rescded afterwards.

Neural Network Based System I dentification Toolbox User’s Guide 1-7

The Multil ayer Perceptron

To summarize alvantages and dsadvantages of ead algorithm, the following table grades the most

important feaures on ascde from -- (worst) to ++ (best):

Exeaution time Robustness Call Memory
batbp - + - -
incbp - + - ++
marq ++ ++ ++ -
marglm + ++ ++ 0
rpe 0 - - ++

Apart from the functions mentioned above, the toolbox offers a number of functions for data scding,
for validation of trained networks and for detemination of optimal network architedures. These

functions will

be described in the following sedion aong with their system identification

counterparts. The sedion describes the red powerful portion of the toolbox, and it is essentialy this
portion that seperates this toolbox from nost other neural network toals currently avail able.

1-8

System | dentification

2 System I dentification

The procedure which must be exeauted when attempting to identify a dynamicd system consists of
four basic steps.

EXPERIMENT K — — — —

L

SELECT
IMODEL STRUCTUR

L

ESTIMATE ¢
MODEL

L

VALIDATE Not Accepted
MODEL

\LAccepted

Figure 2.1 The system identification procedure.

Similarly to the system identification toolbox provided by The MathWorks, Inc., the experimentad
phase is not something which will be dedt with here. It is assumed that experimental data describing
the underlying system in its entire operating region has been obtained before hand with a proper
choice of sampling frequency:

z" ={[u®,y®)] |t=1,...,N}

{u(t)} is no longer just a set of inputs but it is now a signd, the control signd. Likewise {y(t)} now

represents the measured output signal. ‘t'" spedfies ampling instant number t. If the system under
consideration has more than one input and/or output, u(t) and y(t) are sSmply vedors.

2.1 Seled Modd Structure

Asaiming that a data set has been aajuired, the next step is to sedled a mode structure.
Unfortunately, this issue is much more difficult in the nonlinea case than in the linea case. Not only
isit necessary to choose aset of regressors but aso a network architedureis required. The gproach
used here is more or lessidenticd to the one described in S§j6berg et al. (1994). The ideais to seled

Neural Network Based System I dentification Toolbox User’s Guide 1-9

System | dentification

the regressors based on inspiration from linea system identification and then determine the best
possble network architedure with the given regresors as inputs.

The toolbox provides sx different model structures, five of which are listed below. The sixth will not
be discussed until in the next sedion since it has a form which is not motivated by equivalence to a
linear model structure.

¢(t) is avedor containing the regressors, 6 is a vedor containg the weights and g is the function
redized by the neural network.

NNARX
Regressor vedor:

o) =[y(t-1) ... yt-n) ut-n) ... ut-n,-n +D]

Predictor:
9(t6) = Y(tit —1,8) = g(d(t),0)

NNOE
Regressor vedor:

o) =[9(t-16) ... Y(t-nl6) ut-n) ... u(t—nb—nk+1)]T
Predictor:

§(tB) = 9((1), 6)

NNARMAX1
Regressor vedor:

o) =[y(t-1) ... yt-n) ut-n) ... ut-n,-n +1) et-1) .. s(t—nc)]T
=[o1®) et-1 .. et-n)]
where g(t) isthe prediction error g(t) = y(t) — y(t|0)

Predictor:
(1) = 9(,(1).0) +(C(a™) - De(t)

where C is a polynomia in the backward shift operator C(q™) =1+c¢,q ' +-+c,q

1-10

System | dentification

NNARMAX?2
Regressor vedor:

o) =[y(t-1 ... y(t-n) utt-n) .. ut-n,-n+1) et-1) .. s(t—nc)]T

Predictor:
9(t}8) = g(¢(t),0)

NNSSF (state spaceinnovations form)
Regressor vedor:

o =[x"(W8) u'()) € (e)]

Predictor:
X(t+10) = g(9(t),6)
J(t}e) = C(8)X(10)

To abtain a so-cdled pseudo-observable form, a set of psudo-observabili ty indices must be spedfied.
For more detail ed information see Chapter 4, Appendix A in Ljung (1987).

Only the NNARX model has a predictor without feedbadk. The remaining model types al have
feadbadk through the doice of regresors, which in the neural network terminology means that the
networks beame reaurr ent: future network inputs will depend on present and past network outputs.
This might lead to instability in certain areas of the networks's operating range and it can be very
difficult to determine whether or not the predictor is gable. The ARMAX1 structure was
constructed to avoid this by using a linea MA-filter for filtering past resduals. The basic rule of
thumb is however to use aNNARX type model whenever possble!

When a particular model structure has been seleded, the next choice which hes to be made is the
number of past signals used as regressors, i.e., the model order. If no or only very little noise is
present (in which case the nnarx function is always preferred), the toolbox provides a method for
determining the so-cdled lag space

>> QOrderlndexMat = lipschit(U,Y,nb,na)
(See He & Asada, 1993. The function is not aways equally succesful but sometimes reasonable

performance is observed. However, it is always better to have enough physicd insight into the
system to be modelled to choose the model order properly.

2.2 Estimate M odel
The toolbox contains the following functions for generating models from a spedfied model structure:

Neural Network Based System I dentification Toolbox User’s Guide 1-11

System | dentification

Nonlinear System I dentification

nnarmax1 | dentify a neural network ARMAX (or ARMA) model (linea noise filter).
nnarmax2 | dentify a neural network ARMAX (or ARMA) model.

nnarx | dentify a neural network ARX (or AR) model.

nnarxm | dentify a multi-output neural network ARX (or AR) model.

nnigls Iterated generalized least squares training of multi-output NNARX models
nniol | dentify a neural network model suited for I-O lineaizaion type control.
nnoe | dentify a neural network Output Error model.

nnssf | dentify a neural network state spaceinnovations form model.

nnrarmx1 Reaursive munterpart to NNARMAX1.
nnrarmx2 Reaursive munterpart to NNARMAX2.

nnrarx Reaursive munterpart to NNARX.

The functions use ather the Levenberg-Marquardt method or the reaursive prediction error method
and consequently they must be passed many of the same parameters as the functions marq or rpe
when cdled:

>> [WLW2, NSEveciter,lambdg =nnarx(NetDef, NN,W1,W2,trparms,Y,U)

In order for the function to be &le to determine the structure of the regresson vedor, the alditional
argument NN has to be passd (except for nnssf). In, for example, the NNARX case,

NN=[na n, N . Except for nnarxm and nnssf none of the functions are ale to handle multi-output
systems. If one wishes to build aNNARMAX model of a system with more than one output it is thus
necessary to build a seperate model for ead output. However, al functions do handle multi-input
systems, in which case n, and n are spedfied as row vedors containing the proper spedficaions for
ead input.

The functions for building models based on reaurrent networks furthermore requires the parameter
skip, which is used for reducing transient effeds corrupting the training.

>> [WLW2, NSEveciter,lambdg =nnoe(NetDef, NN,W1,W2,trparms,skip,Y,U)

The function nniol differs from the &ove mentioned functions in that it does not generate amodel
motivated by conventiona linea system identification. The ideais to describe the system by:
9(te) = f(y(t-12),...,y(t —n,),u(t —2),...,ut —n,),0;)
+ o(y(t-2,...,y(t—n,),u(t—2),...,u(t —n,),0, u(t -1

1-12

System | dentification

where f and g are two seperate networks. This type of model is particulaly interesting for control by
so-cdled input-output lineaization. Unlessthe intention is to use the model for that spedfic purpose,
it isrecommended to avoid this function sinceit includes two networks instead of just one.

2.3 Validate M odel
When a network has been trained, the next step acwrding the procedure, isto evauate it.

Evaluation of Trained Networks

fpe Final Prediction Error estimate of generalizaion error for feed-forward nets.
ifvalid Validation of models generated by NNSSF.

ioleval Validation of models generated by NNIOL.

loo Leave-One-Out estimate of generdlizaion error for feed-forward networks.

kpredict k-step ahea prediction of network output.

nneva Validation of feed-forward networks (trained by marq, batbp, incbp, or rpe).
nnfpe FPE-estimate for 1-O models of dynamic systems.

nnloo Leare-One-Out estimate of the generalization error for NNARX models
nnsmul Simulate identifyed model of dynamic system from sequence of controls.
nnvalid Validation of 1-O models of dynamic systems.

xcorrel High-order crosscorrelation functions.

The most common method of validation is to investigate the residuals (prediction errors) by cross
validation on a test set. The functions nnvalid and ifvalid perform a number of such tests, including
auto-correlation function of the residuals and crosscorrelation function between controls and
resduals. These functions are displayed along with a histogram showing the distribution of the
resduals. Moreover, alinea mode is extraded from the network at eat sampling instant by a so-
cdled locd instantanous lineaizaion tedhnique (see Sarensen, 1994 Nergaad, 1996. The function
nnvalid, which handles the validation for most of the model types, is cdled as follows if nnarx was
used for generating the model:

>> [Yhat,NSE] =nnvalid(‘ nnarx’ ,NetDef, NN,W1,W2,y,u)
u and y speafy the test set control (=input) and output signals. Yhat is of course the one-step-ahea
predictions produced by the network while NS&E is the aiterion evaluated on the test set (this is
also cdled the test error). With the function xcorréd it is possble to investigate anumber of high-
order crosscorrelation functions (seeBillings et a., 1992

>> xoorrel(‘nnarx’ ,NetDef, NN,W1,W2,y,u)

Neural Network Based System I dentification Toolbox User’s Guide 1-13

System | dentification

The test error is a very important quantity sinceit can be viewed as an estimate of the generalization
error. This ould not be too large compared to training error, in which case one must susped that
the network is over-fitting the training data. If atest set is not available the average generalization
error:

IM) = E{V(é)}, V(®)=lim E{vN (@, N)}

can be estimated from the training set alone by Akaike's final prediction error (FPE) estimate.
Although a test set is available, the FPE estimate might still offer some valuable insights. For the
basic unregularized criterion the estimate reads (seeljung, 1987):

~ N+d ~
Jepe (M) :mVN(GaZN)

d denoting the total number of weights in the network. When the regularized criterion is used, the
expresson gets smewhat more complex (seeLarsen & Hansen, 1994):

Seee (M) = mvm z")
where
v, = tr[REO)(R®) ++ D) *REO)(R®) +4D)”
and

v =t RO(R®) +4D)”

Y, =Y, spedfies the so-cdled effedive number of parameters in the network. It seams as if the

estimate often becomes more reliable in regularized case, which probably has to do with the
regularization having a smoothing effed on the aiterion. A more smooth criterion function means
that the assumptions on which the FPE was derived are more likely to be valid. The function nnfpe
computes the FPE estimate for all the input-output models.

>> [FPE,deff]=nnfpe(‘ nnarx’ ,NetDef, W1,W2,u,y,NN,trparms);

For models trained with nnarx the leave-one-out crossvalidation scheme provides an estimate of the
generalizaion error which in general will be more acairate than the FPE estimate. The leare-one-out
estimate is defined by

N

oMY =5 (y(t) - 5t

é 2
2N & t))

where

8, =ag eminWN_l(G, Z" \{u(t), y(0)})
The function is cdled as follows

>> Eloo=nnloo(NetDef, NN,W1,W2,trparms,u,y)

1-14

System | dentification

If the maximum number of iterations in the trparms vedor is 0, an approximation caled linear
unlearning is employed to avoid having to to train N networks. The ideais that ét is approximated

from a series expansion around 6. Thisleadsto the expresson

é))z N+ (t,0)HO)w(t,6)
N-yT(t,0)H*(B)w(t,6)

SiooM) =5y (-3¢

where

(1)

W(t,0)= 20

0=6

SeeHansen & Larsen (1995 for aderivation. If the network is trained to minimize the unregularized
criterion, the inverse Hessan is approximated by the reaursive gproximation (also used by the
function rpe):

Pt = (Pt -1 - P -Dw®(+¢" OPE-Dw®) " ©PE-1)

Visua inspedion of the plot comparing predictions to adual measurements is probably the most
important validation tool. However, one has to be caeful with one-step ahead predictions. Very
often they may look very acairate, even though the estimated model is quite far from what it should
be. This is particularly true when the system is sampled rapidly compared to its (fastest) dynamics.
An additional ched which Ljung (1987 has recommended, is to perform a pure smulation of the
model. This can be done using the function nnsimul.

>> Yam=nnsmul(‘ nnarx’ ,NetDef, NN,W1,W2,y,u)
One can aso investigate the k-step ahead predictions with the function kpredict

>> Ypred = kpredict('nnarx',NetDef, NN,k,W1,W2,y,u);

For feedforward networks there exist a few functions performing more or lessthe same tests as the
functions discused above for models of dynamic systems. The function nnewval is used for
investigating the residuals while the functions fpe and loo computes the FPE-estimate and LOO
estimate, respedively.

2.4 The Feadback Paths

The figure ill ustrating the identification procedure shows me feadbadk paths from validation to the
previous blocks. The feadbadk from validation to training is due to the aiterion having loca minima.
Sinceit is very likely that one ends up in a “bad” locd minimum, the network should be trained a
couple of times, starting from different initial weights. Regularizaion has a tremendous snoothing
effed on the aiterion and severa of the locd minima ae hence often removed by this. Locd minima
do however remain one of the mgjor problems for nonlinea regressons, and there is no smple way
of avoiding them.

Neural Network Based System I dentification Toolbox User’s Guide 1-15

System | dentification

Another feedbad path in figure 2.1 leads badk to the model structure seledion bock. Because of the
way the model structure seledion problem has been divided into two seperate subproblems, this can
mean two things, namely: “try another regressor structure” or “try another network architedure.”
While the regressor structure typicdly hasto be chosen on atria-and-error basis, it isto some extent
possble to automate the network architedure seledion. For this purpose the toolbox provides the
functions listed in the table below:

Determination of Optimal Network Architedure

netstruc Extrad weight matrices from metrix of parameter vedors.

nnprune Prune models of dynamic systems with Optimal Brain Surgeon (OBS).
obdprune Prune fead-forward networks with Optimal Brain Damage (OBD).
obsprune Prune feed-forward networks with Optimal Brain Surgeon (OBYS).

The so-cdled Optimal Brain Sugeon (OBS) is the most important strategy and it is consequently the
only method which has been implemented for models of dynamic systems. The method was originally
proposed by Hasshi & Stork (1993, but Hansen & Pedersen (1994 have later derived a
modificaion of the method so that it can handle networks trained acording to the regularized
criterion.

Hansen & Pedersen (1994 define asaliency as the estimated increase of the unregularized criterion
when a weight is eliminated. Because of this definition, a new expresson for the saliences is
obtained. The saliency for weight ‘j’ is defined by:
A At At P L1l
{; :NejTH '(®)D6 +%)\ZjejTH YO RO)H(B)E;

where 8" spedfies the minimumand H(0") the GaussNewton Hessan of the regularized criterion:
H®)=R(®)++D

g isthejth unit veaor and A; isthe Lagrange multiplier, which is determined by:

e 6,

N =g T o
' T efH0)e H;I(O)

)

The @nstrained minimum (the minimum when weight ‘j’ is 0) is then found from
36=0"-6=-AH"(0)e

Notice that for the unregularized criterion, where R(8")=H(8"), the &ove dgorithm will
degenerate to scheme of Hasshi & Stork (1993.

The problem with the basic OBS-scheme is that it does not take into acount that it should not be
possble to have networks where ahidden unit has lost al the weights leading to it, while there till
are weights conneding it to the output layer, or vice versa. For this reason the implementation in this

1-16

System | dentification

toolbox goes one step further. In the beginning the saliences are cdculated and the weights are
pruned as described above. But when a situation occurs where aunit has only one weight leading to
it or one weight leading from it, the saliency for removing the entire unit is cadculated instead. This
gives rise to some minor extensions to the dgorithm (the saliency for the unit is cdculated by setting
al weights conneded to the unit to 0. Although this is not the optimal strategy it appeas to be
working aright in pradice See &so (Pedersen et a., 1995):

Define J as the set of indices to the weights leading to and from the unit in question. Furthermore, let
E; be amatrix of unit vedors corresponding to eat element of the set J. In order to cdculate the
saliency for the entire unit, the @ove expressons are then be modified to:

{, =NE;HT(67) 4 D6 +ATE;H™(87)R(E")H(87)EA,
A, =[ETH(O)E, | EJO

30=0"-0=-H"(8")E,A,

When a weight (or unit) has been removed, it is necessary to obtain the new inverse Hessan before
procealing to eliminate new weights. If the network has been retrained it is of course necessary to
construct and invert the Hessan once more. If, however, the network is not retrained, a smple trick
from inversion of partitioned matrices can be used for approximating the inverse Hessan of the
reduced network (Pedersen et al., 1995.

Assume that the pruned weight(s) is(are) located at the end of the parameter vedor, 6. The Hesgan
is then partioned as follows:

H is the 'new' Hesdan, which is to be inverted. Partitioning the inverse Hesdan in the same way
yields

TR e
[PI C P

The new inverse Hesgan is then determined as the Schur Complement of P:

H'=P-p,pip;

It is difficult to dedde how often the network should be retrained during the pruning sesson. Svarer
et al. (1993 suggest a scheme for retraining ead time 5% of the weights have been eliminated. The
safest, but also the most time wnsuming strategy, is of course to retrain the network ead time a
weight has been eliminated.

If amodel has been generated by nnarx, the OBS functionis cdled as:

>> [thdtr_error,FPE,te error,d_eff,pved = ...
nnprune(‘ nnarX' ,NetDef, W1,W2,U,Y,NN,trparms,prparms,U2,Y2);

Neural Network Based System I dentification Toolbox User’s Guide 1-17

System | dentification

prparms spedfies how often the network is retrained. If one wants to run a maximum of 50
iterations ead time 5% of the weights has been eliminated, set prparmsto prparms=[50 §.

thd is a matrix containing the parameter vedors 0 after ead weight elimination. The last column of
thd contains the weights for the initial network. The next-to-last column contains the weights for the
network appeaing after eliminating one weight, and so forth. To extrad the weight matrices from
thd, the function netstuc has been implemented. If for example the network containing 25weights is
the optimal, the weights are retrieved by:

>> [WL,W2] = netstruc(NetDef,thd,25);

25 Time-series Analysis

Almost all functions for supporting the system identification process have been written so that they
can handle time-series as well. Ched the referencein chapter 2 or the online help faality on how this
is can be acomplished.

2.6 Important Issues

* The aiterion function will typicdly have anumber of locad minima and there is no way to
determine whether a given minimum is global or not. Although regularizaion has a smoothing
effed on the aiterion and often will remove anumber of the minima, it is gill recommended to
aways train the network a amuple of times assuming dfferent initial weights.

* |t has been shown that by stopping the training process before aminimum has been readed, an
effed smilar to that of regularizaion is obtained (Soberg & Ljung, 1992. If the network
architedure is sleded larger than necessary, it is therefore alvantagous to use “ealy stopping.”
One may find this drategy appeding, when the dternative is a tedious process of finding the
optimal weight decay and/or prune the network. However, one should be avare that when using
ealy stopping, the FPE and LOO estimates of the generalizaion error will not work reliably since
the expressons were derived under the assumption that the network is trained to a minimum. An
important validation tool is thereby lost. Also the pruning algorithms assume that the network has
been trained to a minimum. It this is not the case, it is definitely not recommended to prune the
network either. In this context it is also important to note that in pradice it is very difficult to
reatcy a minimum with a reaursive dgorithm. It is thus recommended to use batch algorithms
whenever possble.

* Not al m-functions have been written in equally vedorized code. For example, it is not possble
to implement reaursive training algorithms and training algorithms for model structures based on
reaurrent networks in quite & “MATLAB-efficient” code & for batch agorithms to train plain
fead-forward networks. Whereas no significant increase in speed is obtained by porting the
functions batbp, marg (,and nnarx) to C, a serious performance improvement results if the
reaursive dgorithms and the dgorithms for training models based on reaurrent networks are
written in C. So far four CMEX-programs have been implemented: marg.c, nnarmax2.c, nnoe.c,

1-18

System | dentification

nnssf.c. The Makefile acompanying the toolbox should be read on how to compile the source
files.

* Many functions require alot of memory since the wde has been optimized with resped to
exeaution spedl rather than memory usage.

* One should be caeful not to choose the forgetting fador too small when training networks by the
reaursive pediction error method. A small forgetting fador results in very rapid covariance blow-

up.

* When the predictor contains feedbad, stability problems may occur during training as well as
afterwards, when the network is used. One should thus be very careful with models based on
reaurrent networks.

 [|nitidizaion of reaurrent networks. The nnae, nnarmax1 and nnarmax2 functions try to initialize
the weights to make astable initial model. Although it is not aways a problem that the initia
model is unstable, the instability will often result in severe numericd problems. When pruning
reaurrent networks unstable networks often occur during the process

* |t might be that there ae cetain feaures in the training data which one is not interested in
capturing with the model. This could be regular outliars, but it could aso be some undesired
physicd effeds. Consequently one is sometimes interested in removing certain points and time-
intervals from the training set. Unfortunately this is not possble unless the predictor has no
feadbadk (as in NNARX models), since removal of data points otherwise will give rise to
transients.

Neural Network Based System I dentification Toolbox User’s Guide 1-19

Example

3 Example

A simple demonstration example giving a walk through of several of the toolbox functions is
presented below. The subjed of the example investigation is a set of data obtained by simulation of
an open loop stable, nonlinea, continuous g/stem. The data set can ke found along with the toolbox
functions in afile cdled spmdata.mat. Since the data has been generated by simulation, it is known
that it is possble to describe it by a nonlinea output error model. In general, information like thisis
clealy not available, and hence it will in pradice be necessary to test a number of different model
structures before picking the best one. The working procedure is typicdly the same that outlined
below.

Many of the functions produce several plots, but some of these ae saaificed in the example in order
to give the reader a dea overview. If the reader wants to run the example himself, he should be
aware that the results need not be exadly as rown since they depends heavily on the initial weights
chosen by random in the function nnce.

Load data adbtained by experiment
The datais found in the file spmdata.mat, which is found along with al the toolbox functions. Load
the file and use the whas command to view the mntents:
>> |oadspmdata
>> whos
Name Sze Elements Bytes Density Complex

ul 1y600 500 4000 Full No
u2 1y600 500 4000 Full No
yl 1 ly 500 500 4000 Full No
y2 1 ly 500 500 4000 Full No

Grandtotal is 2000elements using 16000 lgtes
uland yl will be used for training, while u2 and y2 will be used for validation purposes only.

Display the training datain a MATLAB figure by typing the following sequence of commands:
>> subpot(211), plot(ul)

>> title('l nput sequence)

>> subpot(212), plot(yl)

>> title(* Output sequence)

>> subpot(111)

1-20

Example

Input sequence
10 T T T

_100 5‘0 160 1%0 260 250 360 3!30 460 4‘50 500
Output sequence
3 T T T
2l i
1k i
(o] i
-1H I
-2r i
_3 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

First the training set is sded to zero mean and variance one and then the test set is scded with the
same @nstants:

>> [uls,uscales] = dscale(ul);
>> [yls,yscales| = dscale(yl);
>> u2s= (u2-uscales(1))/uscales(2);
>> y2s = (y2-yscales(1))/yscales(2);

Determineregressors

The function li pschit is employed to determine the order of the system. For example, the indices for
system orders from 1 to 5 are investigated (here one has to have patience even on a HP9000735
workstation this takes sme time!):

>> Orderindices = lipschit(ulsyls1:5,1:5);

Neural Network Based System I dentification Toolbox User’s Guide 1-21

Example

Order index vs. lag space

10 T

Order index

1 2 3 4 5
Number of past inputs and outputs

10

It is difficult to conclude awything certain from this plot, which probably has to do with the noise
corrupting the measurements. It is however not unreasonable to assume that the system can be
modeled by a second order model sincethe dlope of the aurve is deaeases for model orders >= 2.

Fit aLinear Model

The golden rule in identification (and in most other matters) is to try smple things first. If a linea
model does a decant job, one should not bother wasting time on fancy neural network based model
structures. To identify a linea OE-model, the System Identification Toolbox from The MathWorks,
Inc. (Ljung, 1997 is employed:

>> th=og([yl ul'l,[22]);

>> present(th);

This matrix was created by the ommandOE on 817 1995 &411:9

Lossfcn: 0.2814 Akaike's FPE: 0.2859 Saplinginterval 1

The paynomial coefficients andtheir standad deviations are

B=

0 @153 00275
0 @055 00076

10000 -1.5135 06811
0 @286 00209

The function compare is cdled to compare measurements and predictions.

1-22

Example

>> figure(1), compare([y2' u2],th,1);

Output # 1 Fit: 0.5266
3 T T

—4 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

Yellow: Model output, Magenta: Measured output

The prediction is the smooth curve while the more noisy one represents the measurements.

One of the most common ways of validating an estimated linea model, is to display the aito
correlation function of the residuals and the aosscorrelation function between input and residuals.
This can be done with the function resid:

>> figure(2), resid([y2' u2],th);

Correlation function of residuals. Output # 1

1 T T
0.5r b
0 | -
1 1 1 1
0 5 10 15 20 25
lag
Cross corr. function between input 1 and residuals from output 1
0.6 T T T T T T T T T
0.4r b
0.2 ﬁ/m |
0 |- 4
_02 [,
_04 1 1 1 1 1 1 1 1 1
-25 -20 -15 -10 -5 0 5 10 15 20 25

Neural Network Based System I dentification Toolbox User’s Guide 1-23

Example

From the comparison plot as well as from the correlation functions it clealy appeas that the linea
model has svere problems, espedally for large magnitudes. It is thus concluded that this is due to
the underlying system being nonlinea.

Choaose a Nonlinear M odel Structure
for comparison a NNOE model structure is attempted. Initialy a fully conneded network
architecure with 10 hidden hyperbolic tangent unitsis sleded:

y(t-2)

()
Y
AN

s
A
)

y(t-1)

N \\\0’3'//‘
O]
POERLSED
AN
?\V\r

u(t-2) e ——

'
)
}/j
!

)

u(t-1)

Define the model structure: second order model and 10tanh unitsin hidden layer:
>> NetDef =['HHHHHHHHHHL--------- ' 1;
>> NN=[221;

The network now has to be trained. Let the function initialize the weights, try max. 300 iterations
and use asmal weight decg. Choose the agument skip to 10 to reduce the influence of the
unknown initial conditions:

>> trparms= [300 0 1 £-3]; % 300iterations, use weight decay

>> [WLW2,NSEved =nnoe(NetDef,NN,[] ,[] ,trparms,10,yls,uls);

Validation of trained network

The function nnvalid is cdled to validate the generated NNOE-model. First the validation is
performed on the training set (only the comparison plot is siown here):

>> [wl,w2] = wrescale(W1,W2,uscales,yscales,NN); %Rescale the weights

>> [yhat,NSE] = nnvalid(‘ nnoe’ ,NetDef, NN,wl,w2,y1,ul);

1-24

-1

0.5

-0.5]F

-15

Output (solid) and one-step ahead prediction (dashed)
T

Example

o B N W

‘ M
\ LAl Y i | _

1 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500

time (samples)
Prediction error (y-yhat)
T T T

1 1 1 1 1 1 1 1 1

50 100 150 200 250 300 350 400 450 500

time (samples)

This looks quite satisfadory, and it is definitely better than the linea model. However, it is never a
problem to fit the training data acarately. Redoing the validation on the test set clealy gives a less

flattering result:

>> [yhat,NSE] = nnvalid(‘ nnce’ ,NetDef, NN,wl,w2,y2,u?);

>> figure(2)

Neural Network Based System I dentification Toolbox User’s Guide

Output (solid) and one-step ahead prediction (dashed)
T

r ’\\
A a0 |

_2 - -
_4 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
time (samples)
Prediction error (y—yhat)
2 T T T
1 | - .
0 I
L |
_2 | ,
_3 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

time (samples)

1-25

Example

Auto correlation function of prediction error
1 T T

lag

Both plots more than just indicae that not everything is as it perherps could be. By comparing the
plots for training and test set, it is quite obvious that the network is overfitting the data. It is
concluded therefore that the model structure seleded contains too many weights.

I mprove Performanceby Pruning

In order to remove the superfluous weights from the network, the function nnprune is cdled. This
function determines the optima network architecdure by pruning the network acerding to the
Optimal Brain Surgeon strategy.

Run the function so that the network isretrained after ead weight elimination (thisis the slowest but
safest strategy). Do a maximum of 50 iterations when retraining the network. Passthe test data to
the function so that the test error later can be used for pointing out the optima network. The test
error is the most reliable estimate of the generalizaion error and it is thus reasonable to seled the
network with the smallest test error as fina one. The pruning function is cdled by using the
commands:
>> prparms = [50 (;
>> [thdtrv,fpevitev,deff,pv] = ...

nmoine(‘ nnoe’ ,NetDef, W1,W2,uls,ylsNN,trparms,prparms,u2s,y2s,10);

1-26

Example

X = training error, +=FPE, o = testerror

3 T T T T
+
X
25F -
2 X]
1.5F : -
X
o0
1+ O:0 4
0.51 - x- K % §
o0 o0O0 o
54
00000,
0 ‘ 2 spEas aal AFXRERRRRLLALLE gmm’?%g@**x**x*“
0 10 20 30 40 50 60

Parameters

The dove plot, which is produced by the nnprune function, should be read from right to left. The
plot displays training error, test error, and FPE estimate of the generdization error of ead of the
intermidiate networks. To determine where the test error reades its minimum, it is necessary choose
anew scde for the y-axis to magnify the interesting area

>> figure(l), set(gea,’ Ylim',[0 0.25]);

X = training error, +=FPE, o =testerror

0.25 T T T
000
0.2f ©
o
o
o)
0.15+ : : 1
N
0.1 o ° e et
005 -00n 105~ 000G, GO0
G0 o5
A s sexx
X XXXX Tt
0.05} 00X sestsescx
R RR9e% % it
$x
0 | | | | | |
0 10 20 30 40 50 60

Parameters

This plot clealy reveds that the minimum of the test error occurs when there ae only 25 weights
left in the network. This could also have determined by using the commands:

>> [minteviindeXq = min(teVpv));

>> index=pv(index)

Neural Network Based System I dentification Toolbox User’s Guide 1-27

Example

The outcome of the pruning sesson may seem somewhat peadliar. Idedly one would exped the
training error to increase monotonicdly as the weights are pruned, while FPE estimate and test error
should deaease until a cetain minimum, and the start increasing as well. However, it is not
uncommon that the results look this grange, particularly when the network is reaurrent. Also the
results depend heavily on from which locd minimum one starts out.

The optimal network weights are extraded from the matrix thd by using the function netstruc, which
also displays the network:
>> [WL,W2] = netstruc(NetDef,thd,indeX);

Experience has $rown that regularization is helpful when pruning neural networks. However, when
the optimal network architedure is found, the network should be retrained without weight decay.
Thisis done by issling the commands:

>> trparms= [500 1 Q;

>> [WLW2,NSEved =nnoe(NetDef, NN,W1,W2,trparms,10,yls,uls);

Validation of the Final Network

Start by rescding the weights < that the validation can be performed on unscded data (thisisjust to
being able to seethe differences to analysis of the estimated linea model):

>> [wl,w2] = wrescale(W1,W2,uscales,yscales,NN);

Notice (for example by cdling drawnet) that the biases eliminated duing pruning have been
reintroduced by the rescding function.

Validate the final model:
>> [yhat,NSE] = nnvalid(‘ nnoe’ ,NetDef, NN,wl,w2,y2,u?);

The @rrelation functions aimost stay within thier standard deviations now and thus look far better

than those shown previoudly:
>> figure(2)

1-28

Example

Auto correlation function of prediction error
1 T T

lag

The predictions are dso much closer to the measured output (see the first subplot in figure(1)
produced by nnvalid or issue the following sequence of commands):

>> plot(y1(3:500), had on

>> plot(yhat,’m--"), hold off

>> title(* Output (solid) and ore-step ahead prediction (dashed)’)

>> xlabel(‘time (samples)’)

Output (solid) and one-step ahead prediction (dashed)
3 T T

—4 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

time (samples)

Neural Network Based System I dentification Toolbox User’s Guide 1-29

References

4 References

S.A. Billings, H.B., Jamaluddn, S. Chen (1992: “ Properties of Neural Networks With Applications
to Modelling nonlinear Dynamical Systems’, Int. J. Control, Vol. 55, No 1, pp. 193224, 1992

H. Demuth & M. Bede: “ Neural Network Toolbox” , The MathwWorks Inc., 1993
R. Fletcher (1987:“ Practical Methods of Optimization” , Wiley, 1987

L.K. Hansen and J. Larsen (1995: "Linear Unlearning for CrossValidation", Submitted for
Advances in Computational Mathematics, April 1995

L.K. Hansen & M. W. Pedersen (1994):“ Controlled Growth of Cascade Correlation Nets’, Proc.
ICANN ‘94, Sorrento, Italy, 1994 Eds. M. Marinaro & P.G. Moras, pp. 797-800.

B. Hasshi, D.G. Stork (1993: “ Second Order Derivatives for Network Pruning: Optimal Brain
Sugeon’, NIPS5, Eds. S.J. Hanson et a., 164, San Mateo, Morgan Kaufmann, 1993

S. Haykin (1993: “ Neural Networks, A Comprehensive Founddion,” |IEEEPress 1993
X. He & H. Asada (1993: "A New Method for Identifying Orders of Inpu-Output Models for
Nonlinear Dynamic Systems', Proc. of the American Control Conf., S.F., California, 1993

J. Hertz, A. Krogh & R.G. Pamer (199)): “Introduction to the Theory of Neural Computation” ,
Addison-Wesley, 1991

Y. Le Cun, JS. Denker, SA Solla (1989: “Optimal Brain Damage’, Advances in Neurd
Information Processng Systems, Denver 1989 ed. D. Touretzsky, Morgan Kaufmann, pp. 598-605.

Y. Le Cun, |. Kanter, S.A. Solla (1991):“ Eigenvalues of Covariance Matrices. Application to
Neural-Network Learning” , Physicd Review Letters, Vol 66, No. 18, pp. 23962399 1991

L. Ljung (198%:" System Identification - Theory for the User” , Prentice-Hall, 1987

L. Ljung (199)): “ System Identification Toolbox User’s Guide” , The MathWorks Inc., 1991

J. Larsen & L.K. Hansen (19949:“ Generalization Performance of Regularized Neural Network
Models', Proc. of the IEEE Workshop on Neural networks for Signal Proc. 1V, Piscaaway, New
Jersey, pp.42-51, 1994

K. Madsen (1991):" Optimering’, (in danish). Hadte 38, IMM, DTU, 1991

D. Marquardt (1963: “ An Algorithm for Least-Squaes Estimation d Nonlinear Parameters,”
SIAM J. Appl. Math. 11, pp. 164168

M. Ngrgaad (1996: " System ldentification and Control with Neural Networks,” Ph.D. thesis,
Department of Automation, Tedhnicd University of Denmark.

1-30

References

JE. Parkum (1992: “ Reaursive ldentification d Time-Varying Sstems’, Ph.D. thess, IMM,
Tednicd University of Denmark, 1992

M.W. Pedersen, L.K. Hansen, J. Larsen (1995: “Pruning With Generalization Based Weight
Sdiences. yOBD, yOBS', Proc. of the Neural Information Processng Systems 8.

M.E. Salgado, G. Goodwin, R.H. Middeton (1988: “Modified Least Squaes Algorithm
Incorporating Exporential Forgetting And Resetting” , Int. J. Control, 47, pp. 477-491

J. §oberg, H. Hjamerson, L. Ljung (1994:“ Neural Networks in System Identification”, Preprints
10th IFAC symposium on SY SID, Copenhagen, Denmark. Vol.2, pp. 49-71, 1994

J. §bberg & L. Ljung (1992: Ovetraining, Regularization, and Sarching for Minimum in Neural
Networks’ , Preprint IFAC Symp. on Adaptive Systems in Control and Signal Processng, Grenoble,
France pp. 669674

C. Svarer, L.K. Hansen, J. Larsen (1993: “On Design andEvaluation d Tapped-Delay Neural
Network Architedures’, The 1993 IEEE Int. Conf. on Neural networks, San Francisco, Eds. H.R.
Bereniji et al., pp. 45-51.

O. Sarensen (1994:“ Neural Networks in Control Applications’, Ph.D. Thesis. Aalborg University,
Department of Control Engineaing, 1994

Neural Network Based System I dentification Toolbox User’s Guide 1-31

