
Neural Network Based System Identification Toolbox User’s Guide 2-1

2 Reference
This chapter contains a detailed description of all the functions in the Neural Network Based
System Identification Toolbox. The information given here is more or less identical to that
obtained from the online help facili ty.

General Network Training Algorithms

batbp

igls

incbp

marq

marqlm

rpe

Batch version of the back-propagation algorithm.

Iterated generalized least squares training of multi-output networks

Recursive (/incremental) version of back-propagation.

Levenberg-Marquardt method.

Memory-saving implementation of the Levenberg-Marquardt method.

Recursive prediction error (~Gauss-Newton) method.

Data Manipulation

dscale Scale data to zero mean and variance 1.

2-2

Nonlinear System Identification

lipschit

nnarmax1

nnarmax2

nnarx

nnarxm

nnigls

nniol

nnoe

nnssif

nnrarmx1

nnrarmx2

nnrarx

Determine the lag space.

Identify a neural network ARMAX (or ARMA) model (linear MA-filter).

Identify a neural network ARMAX (or ARMA) model.

Identify a neural network ARX (or AR) model.

Identify a multi-output neural network ARX (or AR) model.

Iterated generalized LS training of multi-output NNARX models

Identify a neural network model suited for I-O linearization type control.

Identify a neural network Output Error model.

Identify a neural network state space innovations form model.

Recursive counterpart to NNARMAX1.

Recursive counterpart to NNARMAX2.

Recursive counterpart to NNARX.

Determination of Optimal Network Architecture

netstruc

nnprune

obdprune

obsprune

Extract weight matrices from matrix of parameter vectors.

Prune models of dynamic systems with Optimal Brain Surgeon (OBS).

Prune feed-forward networks with Optimal Brain Damage (OBD).

Prune feed-forward networks with Optimal Brain Surgeon (OBS).

Neural Network Based System Identification Toolbox User’s Guide 2-3

Evaluation of Trained Networks

fpe

ifvalid

ioleval

kpredict

loo

nneval

nnfpe

nnloo

nnsimul

nnvalid

wrescale

xcorrel

Final Prediction Error estimate of generalization error for feed-forward nets.

Validation of models generated by NNSSIF.

Validation of models generated by NNIOL.

k-step ahead prediction of network output.

Leave-One-Out estimate of generalization error for feed-forward networks.

Validation of feed-forward networks (trained by marq, batbp, incbp, or rpe).

FPE-estimate for I-O models of dynamic systems.

Leave-One-Out estimate of generalization error for NNARX models

Simulate model of dynamic system.

Validation of I-O models of dynamic systems.

Rescale weights of a trained network.

High order cross-correlation functions.

Miscellanous Utilities

drawnet

getgrad

pmntanh

Draws a two-layer feed-forward network.

Derivative of network outputs w.r.t. the weights.

Fast tanh-function

2-4

Demonstration Programs

test1

test2

test3

test4

test5

test6

test7

Demonstrates different training methods on a curve fitting example.

Demonstrates the NNARX function.

Demonstrates the NNARMAX2 function.

Demonstrates the NNSSIF function.

Demonstrates the NNOE function.

Demonstrates the effect of regularization by simple weight decay.

Demonstrates pruning by OBS on the sunspot benchmark problem.

batbp

Neural Network Based System Identification Toolbox User’s Guide 2-5

batbp
Purpose

Batch version of the back-propagation algorithm.

Synopsis
[W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms)

Input
NetDef: Network definition.
W1: Input-to-hidden layer weights. The matrix dimension is

 [(# of hidden units) * (inputs + 1)] (the 1 is due to the bias)
W2: Hidden-to-output layer weights. The matrix dimension is
 [(outputs) * (# of hidden units + 1)]

PHI: Input data [(# of inputs) * (# of data)]
Y: Output data [(outputs) * (# of data)]
trparms: Vector containing parameters associated with the training
 trparms = [max_iter eta alpha]

 max_iter: Max. number of iterations.
 stop_crit: Stop learning if the criterion is below this value.
 eta: Step size.
 alpha: Momentum. Default is 0 (=off).

Output
W1, W2: Weight matrices when the training is completed.
critvec: Vector containing the criterion of fit after each iteration.
iter: # of iterations.

Description
Given a set of corresponding input-output pairs and an initial network
[W1,W2,critvec,iter] = batbp(NetDef,W1,W2,PHI,Y,trparms) trains the
network with back-propagation.

The activation functions must be either linear or tanh. The network
architecture is defined by the matrix 'NetDef' consisting of two rows. The first
row specifies the hidden layer while the second specifies the output layer.

E.g.: NetDef = ['LHHHH'
 'LL---']

(L = Linear, H = tanh)

batbp

2-6

Notice that the bias is included as the last column in the weight matrices!

Example
Generate data as sinusoidal+noise
>> PHI = 2*pi* rand(1,300);
>> Y = sin(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y,’+’);

Initialize Network. 5 tanh hidden units, 1 linear output.
>> W1 = rand(5,2);
>> W2 = rand(1,6);
>> NetDef = [‘HHHHH’;’ L----’] ;
>> drawnet(W1,W2,eps)
>> trparms = [1000 0.02 0.1 0] ;
>> [W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms);

Plot the value of the criterion as a function of the iteration number
>> semilogy(critvec); grid;
>> xlabel(‘I teration’);
>> ylabel(‘Criterion’)

Algorithm
Back-propagation is a gradient descent algorithm where the computations are
ordered in a simple fashion by taking advantage of the special architecture of a
neural network. In this implementation the step size is fixed.

See Also
INCBP for the recursive/incremental version.
NNEVAL for validation of the trained network.
MARQ, RPE, FPE, LOO, OBDPRUNE, OBSPRUNE.

References
J. Hertz, A. Krogh & R.G. Palmer: “ Introduction to the theory of Neural
Computation,” Addison-Wesley, 1991.

drawnet

Neural Network Based System Identification Toolbox User’s Guide 2-7

drawnet
Purpose

Draws a two layer neural network.

Synopsis
drawnet(W1,W2,CancelVal,instring,outstring)

Input
W1: Input-to-hidden layer weights. The matrix dimension is

 [(# of hidden units) * (inputs + 1)] (the 1 is due to the bias)
W2: Hidden-to-output layer weights. The matrix dimension is
 [(outputs) * (# of hidden units + 1)]

CancelVal: Draw only weights/biases exceeding this value.
instring: (OPTIONAL). A “string matrix” with as many rows as there are

inputs If it is present it labels the network inputs. Otherwise the
inputs are numbered.

outstring: (OPTIONAL and only used if instr exists). “String matrix” with as
many rows as there are outputs. If it is present it labels the
network outputs.

Description
Draws the network specified by the weights in W1 and W2. Positive weights
are represented by a solid line while a dashed line represents a negative weight.
Only weights and biases larger than 'CancelVal' are drawn. A bias is
represented by a vertical line through the neuron.

Example
Initialize Network. 5 tanh hidden units and 1 linear output
>> W1 = rand(5,3);
>> W2 = rand(1,6);
>> str1 = [‘ x1’;’ x2’;’ x253’] ; %The spaces make each row of equally long
>> str2 = ‘y’
>> drawnet(W1,W2,eps,str1,str2)

See Also
OBDPRUNE, OBSPRUNE, NNPRUNE.

Reference
This function is a modified version of a function originally provided by Claus
Svarer, Copenhagen University Hospital.

drawnet

2-8

dscale
Purpose

Scale data to zero mean and variance 1 before training

Synopsis
[X,Xscale]=dscale(X)

 Input
 X: Data matrix (dimension is # of data vectors in matrix * # of data points).

 Output
 X: Scaled data matrix
 Xscale: Matrix containing sample mean (column 1) and standard deviation

(column 2) for each data vector in X.

See Also
WRESCALE on how to rescale the weights of the trained network.

References
Y. Le Cun, I. Kanter, S.A. Solla: “ Eigenvalues of Covariance Matrices:
Application to Neural-Network Learning,” Physical Review Letters, Vol 66,
No. 18, pp. 2396-2399, 1991.

fpe

Neural Network Based System Identification Toolbox User’s Guide 2-9

fpe
Purpose

Final prediction error (FPE) estimate of the avarage generalization error.

Synopsis
[FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms)

Input
See for example the function MARQ.

Output
FPE: The Final prediction error estimate.
deff : The effective number of weights.
varest: Estimate of the noise variance.
H: The Gauss-Newton Hessian.

Description
[FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) calculates Akaike’s
final prediction error estimate of the average generalization error. The function
returns the final prediction error estimate (FPE), the effective number of
weights in the network if the network has been trained with weight decay, an
estimate of the noise variance, and the Gauss-Newton Hessian. It is important
that the network has been trained to the minimum of the criterion before this
function is called.

See Also
LOO for the Leave-One-Out estimate.
NNFPE gives the FPE estimate for models of dynamic systems.

References
J. Larsen & L.K. Hansen: “ Generalization Performance of Regularized Neural
Network Models," Proc. of the IEEE Workshop on Neural networks for Signal
Proc. IV, Piscataway, New Jersey, pp.42-51, 1994.

L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987.

getgrad

2-10

getgrad
Purpose

Derivative of network output w.r.t. the weights.

Synopsis
[PSI,E] = getgrad(method,NetDef,NN,W1,W2,Chat,Y,U)

Inputs
See NNVALID.
For time series, U is either left out or passed as a [] .

Output
PSI: Matrix containing the derivative of the output w.r.t. each weight for

each input-output pair in the data set. The dimension is
[# of weights * # of data]

E: Prediction errors.

Description
Produces a matrix of derivatives of the network output w.r.t. each network
weight for use in the functions NNPRUNE and NNFPE.

Examples
Network generated by nnarx (or nnrarx):
 >> [PSI,E] = getgrad('nnarx',NetDef,NN,W1,W2,[] ,Y,U)

Network generated by nnarmax1 (or nnrarmx1):
 >> [PSI,E] = getgrad('nnarmax1',NetDef,NN,W1,W2,Chat,Y,U)

Network generated by nnarmax2 (or nnrarmx2):
 >> [PSI,E] = getgrad('nnarmax2',NetDef,NN,W1,W2,[] ,Y,U)

Network generated by nnoe:
 >> [PSI,E] = getgrad('nnoe',NetDef,NN,W1,W2,[] ,Y,U)

See Also
NNPRUNE and NNFPE

ifvalid

Neural Network Based System Identification Toolbox User’s Guide 2-11

ifvalid
Purpose

Validate state space models.

Synopsis
[Yhat,NSSE] = ifvalid(NetDef,nx,W1,W2,obsidx,Y,U)

Input
See the function NNSSIF.

Output
Yhat: Prediction of output(s).
NSSE:Normalized sum of squared errors.

Description
Validate a neural network based state space model of a dynamic system. I.e., a
network model trained with the function NNSSIF.

The following plots are produced:
- Output(s) together with predicted output(s).
- Prediction error.
- Auto correlation function of prediction error and cross-correlation between

prediction error(s) and input(s).
- Histogram(s) showing the distribution of the prediction errors.
- Coefficients of extracted linear models.

Example
>> load spmdata
>> NetDef = ['HHHH';'LL--'] ;
>> trparms = [100 0 1 1e-4] ;
>> [W1,W2,obsidx,critvec,iter,lambda] =...

nnssif(NetDef,2,[] ,[] ,[] ,trparms,10,y1,u1);
>> [yhat,NSSE]=ifvalid(NetDef,2,W1,W2,obsidx,y2,u2);

See Also
NNSSIF, NNVALID, NNEVAL, IOLEVAL

ifvalid

2-12

igls
Purpose

Iterated Generalized Least Squares training of a neural network with multiple
output.

Synopsis
[W1,W2,lambda,Gamma]=igls(NetDef,W1,W2,trparms,repeat,Gamma,PHI,Y)

Input
NetDef, W1, W2, trparms, PHI, Y: See the function MARQ.
repeat: Repeat the IGLS procedure repeat times. If passed as [] it is set to 5.
Gamma: Initial estimate of the covariance matrix for the noise. If passed as []

it is set to the identity matrix.
trparms: Vector containing parameters associated with the training (see

MARQ). Default values (obtained if trparms=[]): trparms=[50 0 1 0]

Output
W1, W2, lambda: See the function MARQ.
Gamma: The estimated covariance matrix.

Description
A multi-output feedforward network and the noise covariance matrix are
estimated with an iterative relaxation procedure.

It is important to notice that the network returned from this function will
produce predictions of scaled outputs (see the Algorithm paragraph). It is
necessary to multiply the output by sqrtm(Gamma) to obtain the unscaled
predictions. If the network has linear output units one can instead scale the
hidden-to-output layer weights: W2= sqrtm(Gamma)*W2.

Example
Generate data as two sinusoidals+noise
>> PHI = 2*pi* rand(1,300);
>> Y = [sin(PHI);cos(PHI)] + [0.1*randn(1,300);0.8*randn(1,300)]
>> plot(PHI,Y(1,:),’+’ ,PHI,Y(2,:),’o’);

Train an initial network with 5 tanh hidden units, 2 linear output
>> W1 = rand(5,2);
>> W2 = rand(1,6);

igls

Neural Network Based System Identification Toolbox User’s Guide 2-13

>> NetDef = [‘HHHHH’;’ LL---’] ;
>> drawnet(W1,W2,eps,’phi’ , [‘ y1’;’ y2’])
>> trparms = [100 0 0.1] ;
>> [W1,W2]=marq(NetDef,W1,W2,PHI,Y,trparms);

Apply the IGLS procedure 10 times and train 30 iterations in each step.
>> trparms(1)=30;
>> [W1,W2,lambda,Gamma]=igls(NetDef,W1,W2,trparms,10, [] ,PHI,Y);
>> W2u=sqrtm(Gamma)*W2;
>> [Yhat,E,NSSE]=nneval(NetDef,W1,W2u,PHI,Y);

Algorithm
The implemented IGLS procedure is very simple
for j=1:repeat,

Train the network
Estimate the covariance matrix

end

The network is trained with the function MARQ according to the criterion

() ()

∑

∑

=

−
−

=

−
−

Λ=

−Λ−==

N

t
j

T

N

t
j

TN
Nj

tt
N

tytytyty
N

ZV

1

1
1

1

1
1

),(ˆ),(
2

1

)(ˆ)(ˆ)(ˆ)(
2

1
),(ˆ

θεθε

θθθθ

and the covariance matrix is estimated as

∑
=

=Λ
N

t

jTj
j tt

N 1

)()()ˆ,()ˆ,(
1ˆ θεθε

To reduce the amount of computations the network is trained by first scaling
the outputs as

)()(tyty Σ=
where

ΣΣ=Λ T

and subsequently train the network according to

() ()∑
=

−−==
N

t

TN
Nj tytytyty

N
ZV

1

)(ˆ)()(ˆ)(
2

1
),(ˆ θθθθ

If the network has linear output units, W2 should be scaled by 22 1WuW −Σ= .

See Also
MARQ for Levenberg-Marquardt training.
NNARXM for identification of multi-output NNARX models

ifvalid

2-14

NNIGLS for igls estimation of multi-output NNARX models.

References
T.J Fog, J. Larsen, L.K. Hansen: Training and Evaluation of Neural Networks
for Multi -Variate Time-Series Processing. Proc. IEEE International
Conference on Neural Networks, Perth, Australia.

incbp

Neural Network Based System Identification Toolbox User’s Guide 2-15

incbp
Purpose

Recursive (/incremental) version of the back-propagation algorithm.

Synopsis
[W1,W2,critvec,iter]=incbp(NetDef,W1,W2,PHI,Y,trparms)

Input
NetDef: Network definition
W1: Input-to-hidden layer weights. The matrix dimension is

 [(# of hidden units) * (inputs + 1)] (the 1 is due to the bias)
W2: Hidden-to-output layer weights. The matrix dimension is
 [(outputs) * (# of hidden units + 1)]

PHI: Input data [(# of inputs) * (# of data)]
Y: Output data [(outputs) * (# of data)]
trparms: Vector containing parameters associated with the training
 trparms = [max_iter stop_crit eta]

max_iter : Max. number of iterations
stop_crit : Stop training if the criterion is below this value
eta : Step size

Output
W1, W2: Weight matrices after training.
critvec: Vector containing the criterion evaulated after each iteration.
iter : # of iterations.

Description
Given a set of corresponding input-output pairs and an initial network INCBP
trains a network with recursive back-propagation.

The activation functions must be either linear or tanh. The network
architecture is defined by the matrix ‘NetDef’ consisting of two rows. The first
row specifies the hidden layer while the second specifies the output layer.

E.g.: NetDef = ['LHHHH'
 'LL---']

(L = Linear, H = tanh)

Notice that the bias is included as the last column in the weight matrices!

incbp

2-16

Example
Generate data as sinusoidal+noise
>> PHI = 2*pi* rand(1,300);
>> Y = sin(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y,’+’);

Initialize Network. 5 tanh hidden units, 1 linear output
>> W1 = rand(5,2);
>> W2 = rand(1,6);
>> NetDef = [‘HHHHH’;’ L----’] ;
>> drawnet(W1,W2,eps)
>> trparms = [1000 0.02 0.1] ;
>> [W1,W2,critvec,iter]=incbp(NetDef,W1,W2,PHI,Y,trparms);

Plot criterion evaluated after each iteration
>> semilogy(critvec); grid;
>> xlabel(‘I teration’);
>> ylabel(‘Criterion’)

Algorithm
Back-propagation is a gradient descent algorithm where the computations are
ordered in a simple fashion, by taking advantage of the special architecture of a
neural network. In this implementation the step size is fixed.

See Also
BATBP for the batch version.
RPE for a recursive Gauss-Newton algorithm.
MARQ, NNEVAL.

References
J. Hertz, A. Krogh & R.G. Palmer: “ Introduction to the theory of Neural
Computation,” Addison-Wesley, 1991.

ioleval

Neural Network Based System Identification Toolbox User’s Guide 2-17

ioleval
Purpose

Validate models generated by NNIOL.

Synopsis
[Yhat,NSSE]=ioleval(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,Y,U)

Inputs
See the function NNIOL for an explanation of the inputs.

Outputs
Yhat: One-step ahead prediction of output.
NSSE: Normalized sum of squared error (SSE/2N).

Description
Evaluate a neural network based model on a form well-suited for control by
discrete input-output linearization. I.e., a network model trained with the
function NNIOL.

The following plots are produced:
- Observed output together with predicted output.
- Prediction error.
- Histogram showing the distribution of the prediction errors.

Example
>> load spmdata
>> NetDeff = ['HHHHH';'L----'] ;
>> NetDefg = ['HHH';'L--'] ;
>> NN=[2 2 1] ;
>> trparms = [300 0 1 1e-3] ;
>> [W1f,W2f,W1g,W2g,critvec,iter,lambda] =...

nniol(NetDeff,NetDefg,NN,[] ,[] ,[] ,[] ,trparms,y1,u1);
>> [yhat,NSSE]=ioleval(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,y2,u2);

See Also
NNIOL, NNVALID, NNEVAL, IFVALID

ioleval

2-18

kpredict
Purpose

k-step ahead prediction of system output.

Synopsis
Network generated by NNARX (or NNRARX):

Ypred = kpredict('nnarx',NetDef,NN,k,W1,W2,Y,U);

(likewise for networks generated with NNARMAX1+2 and NNOE)

Input
See NNVALID

Output
Ypred: Vector containing the k-step ahead predictions of the outputs.

NB! The function does not work for models generated by NNIOL, NNARXM,
or NNSSIF.

Description
Determine the k-step ahead prediction of the output of a dynamic system and
compare it to the observed output. The predictions are determined by feeding
past predictions into the network where observations are not available and by
setting unavailable residuals to zero. Except for NNOE models a predictor
defined in this manner cannot be expected to be the optimal predictor.

Example
>> load spmdata
>> NetDef = ['HHHH’; 'L---'] ;
>> NN=[2 2 1] ;
>> trparms = [100 0 1 1e-3] ;
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[] ,[] ,trparms,y1,u1);
>> ypred=kpredict('nnarx',NetDef,NN,10,W1,W2,y1,u1);

lipschit

Neural Network Based System Identification Toolbox User’s Guide 2-19

lipschit
Purpose

Determine the lag space.

Synopsis
[OrderIndexMat]=lipschit(U,Y,m,n)

Inputs
U: Sequence of inputs (row vector)
Y: Sequence of outputs (row vector)
m: Vector specifying the input lag spaces to investigate
n: Vector specifying the ouput lag spaces to investigate

Outputs
OrderIndexMat: A matrix containing the order indices for each combination

of elements in the vectors m and n. The number of rows
corresponds to the number of elements in m, while the
number of columns corresponds to the number of elements
in n.

Description
Given corresponding input and output sequences the function calculates a
matrix of indices that can be helpful for determining a proper lag space
structure (m and n) before identifying a model of a dynamic system:
 y(t) = f(y(t-1),...,y(t-n), u(t-1),..., u(t-m))
An insufficient lag space structure leads to a large index. While increasing the
lag space the index will decrease until a sufficiently large lag space structure is
reached. Increasing the lag space further will not change the index significantly.
In other words: look for the knee-point of the plot, i.e., where the order index
flattens out.

m is a vector specifying which input lag spaces to investigate and n is ditto for
the output. If one is only interested in the order index for one particular choice
of lag structure, n and m are specified as scalars, and only the order index is
returned. In the more general case, where one or both are vectors, the function
will also produce one or two plots.

Examples
 o NNFIR model structure expected:

lipschit

2-20

m=[1:20]; n=0;

 o Time series:
U=[] ; m=0;

 o Check only n=m:
m=[1:5]; n=m;

Algorithm
The function should be used with some care. Do not rely on the results if the
data is too corrupted by noise. Physical insight is by far the best tool for
determination of the lag space.

At this point the function works for SISO systems only. Extension to the
multivariable case should be straightforward, however.

See Also
Use function DSCALE to scale the data.

 Reference
X. He & H. Asada: "A New Method for Identifying Orders of Input-Output
Models for Nonlinear Dynamic Systems," Proc. of the American Control
Conf., S.F., California, 1993.

loo

Neural Network Based System Identification Toolbox User’s Guide 2-21

loo
Purpose

Estimate the average generalization error by leave-one-out cross-validation.

Synopsis
[Eloo,H] = loo(NetDef,W1,W2,PHI,Y,trparms)

Input
NetDef, W1, W2,
PHI, Y, trparms : See the function MARQ
If the variable max_iter=0 in trparms, linear unlearning is used for obtaining a
cheap approximation to the LOO estimate. If max_iter>0 the network will be
retrained a maximum of max_iter iterations for each input-output pair that is
left out.

Output
Eloo: The leave-one-out cross-validation estimate of the average

generalization error
H: The Gauss-Newton Hessian

Description
LOO calculates an approximation to the leave-one-out estimate of the average
generalization error. The function returns the loo-estimate along with the
Gauss-Newton Hessian.

Algorithm
When max_iter=0 “ linear unlearning” is used to get a quick approximation to
the LOO-estimate. This approximation is much easier to compute than the true
LOO-estimate, but is in general less reliable. Typically it is comparable to the
FPE-estimate. See the reference below for a derivation.

See Also
FPE for Akaike’s final prediction error estimate.

Reference
L.K. Hansen and J. Larsen (1995): "Linear Unlearning for Cross-Validation,"
submitted for Advances in Computational Mathematics, 1995

marq

2-22

marq
Purpose

Train a (possibly pruned) network with the Levenberg-Marquardt method.

Synopsis
[W1,W2,critvec,iteration,lambda] = marq(NetDef,W1,W2,PHI,Y,trparms)

Input
NetDef: Network definition
W1: Input-to-hidden layer weights. The matrix dimension is

 [(# of hidden units) * (inputs + 1)] (the 1 is due to the bias)
W2: Hidden-to-output layer weights. The matrix dimension is
 [(outputs) * (# of hidden units + 1)]

PHI: Input data [(# of inputs) * (# of data)]
Y: Output data [(outputs) * (# of data)]
trparms: Vector containing parameters associated with the training.
trparms = [max_iter stop_crit lambda D]

max_iter: max # of iterations.
stop_crit: Stop training if criterion is below this value.
lambda: Initial Levenberg-Marquardt parameter.
D: Row vector containing the weight decay parameters. If D has

one element a scalar weight decay will be used. If D has two
elements the first element will be used as weight decay for the
hidden-to-output layer and while second will be used for the
input-to-hidden layer weights. For individual weight decays, D
must contain as many elements as there are weights in the
network.

Default values (obtained if trparms is left out or =[]) : trparms=[500 0 1 0]

Output
W1, W2: Weight matrices after training.
critvec: Vector containing the criterion evaluated after each iteration.
iteration: # of iterations.
lambda: The final value of lambda. Relevant if retraining is desired.

Description
Given a set of corresponding input-output pairs and an initial network, a two
layer neural network is trained with the Levenberg-Marquardt method. If
desired it is possible to use regularization by weight decay. Also pruned (i.e.,

marq

Neural Network Based System Identification Toolbox User’s Guide 2-23

not fully connected) networks can be trained. The activation functions can be
either linear or tanh. The network architecture is defined by matrix 'NetDef'
which has two rows. The first row specifies the hidden layer while the second
specifies the output layer.

E.g.: NetDef = ['LHHHH'
 'LL---']
 (L = linear, H = tanh)

Notice that the bias in is included as the last column in the weight matrices and
that a weight is pruned (i.e., 0 and not updated) by initializing it to 0.

Example
Generate data as sinusiodal +noise
>> PHI = 2*pi* rand(1,300);
>> Y = sin(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y,’+’);

Initialize network. 5 tanh hidden units, 1 linear output
>> W1 = rand(5,2);
>> W2 = rand(1,6);
>> NetDef = [‘HHHHH’;’ L----’] ;
>> drawnet(W1,W2,eps)
>> trparms = [300 0.02 1 0] ;
>> [W1,W2,critvec,iter,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms);

Plot criterion evaluated after each iteration
>> semilogy(critvec); grid;
>> xlabel(‘I teration’);
>> ylabel(‘Criterion’)

Algorithm
The algorithm is a standard Gauss-Newton based Levenberg-Marquardt
method as described in the references below. The trust region is adjusted in an
indirect fashion by directly increasing/decreasing the diagonal added to the
Hessian according to the ratio between actual and predicted change in criterion.

See Also
MARQ2, MARQLM, RPE, BATBP, INCBP, NNEVAL.

References
R. Fletcher: “ Practical Methods of Optimization,” Wiley, 1987.
K. Madsen: “ Optimering,” (in danish). Haefte 38, IMM, DTU, 1991.

marqlm

2-24

marqlm
Purpose

Implementation of the Levenberg-Marquardt method that uses less memory
than MARQ.

Description
A less memory consuming (but slower) version of the Levenberg-Marquardt
training algorithm implemented in MARQ. The difference in speed occurs
because the function is less “vetorized” (which is a MATLAB problem), but
also because some of the calculations are carried out more than once.

netstruc

Neural Network Based System Identification Toolbox User’s Guide 2-25

netstruc
Purpose

Extract weight matrices from parameter vector.

Synopsis
[W1,W2]=netstruc(NetDef,thd,index)

Inputs
NetDef: Architecture definition.
thd: Matrix containing parameter vectors returned by OBDPRUNE,

OBSPRUNE or NNPRUNE.
index: Specifies the location in 'thd' where the optimal parameter vector is

located.

Outputs
W1, W2: Weight matrices.

Description
NETSTRUC extracts the weight matrices from the matrix of parameter vectors
produced by the pruning functions OBDPRUNE, OBSPRUNE and
NNPRUNE.

Example
Prune network by OBS
>> [thd,tre,fpevec,tee,deff,pvec]=...

obsprune(NetDef,W1,W2,PHI1,Y1,trparms,[] ,PHI2,Y2)

Find index to minimum FPE
>> [minfpe,index] = min(fpevec(pvec));
>> index = pvec(index);

Extract weights from matrix of parameter vectors
>> [W1,W2] = netstruc(NetDef,thd,index);
>> drawnet(W1,W2,eps)

See Also
OBDPRUNE, OBSPRUNE, NNPRUNE.

nnarmax1

2-26

nnarmax1
Purpose

Identify a Neural Network ARMAX (or ARMA) model (linear MA-filter).

Synopsis
[W1,W2,Chat,critvec,iteration,lambda]=...
 nnarmax1(NetDef,NN,W1,W2,Chat,trparms,skip,Y,U)

Input
U: Input (= control signal) (left out in the nnarma case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]
NN: NN=[na nb nc nk].

na = # of past outputs used for determining the prediction.
nb = # of past inputs.
nc = # of past residuals (= order of C).
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as there
are inputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W1)= [(# of hidden units) * (na+nb+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as [] , they are initialized automatically.

Chat: Initial MA-filter estimate (initialized automatically if Chat=[]) .
trparms: Contains parameters associated with the training (see marq).
 if trparms=[] is passed the default trparms=[500 0 1 0] is used.

skip: Don’t use the first ‘skip’ samples for training to reduce the
influence from the transient occuring because of the unknown initial
prediction errors and gradient. If skip=[] is passed the default value
skip=0 will be used.

See the function MARQ for a more detailed explanation of ‘ trparms’.

NB! For time series (NNARMA models) NN=[na nc] only.

Ouput
See the function MARQ for an explanation of the returned variables.

nnarmax1

Neural Network Based System Identification Toolbox User’s Guide 2-27

Description
Determines a nonlinear ARMAX model of a dynamic system by training a two
layer neural network with the Levenberg-Marquardt method. The function can
handle multi-input single-output systems (MISO). It is assumed that the noise
can be modeled by filtering the residuals with a linear MA-filter:

()�() (), , (), (), , () () ()y t g y t y t n u t n u t n n C q ta k b kθ ε= − − − − − + + −1 1 1� �
in which case problems with instabili ty of the predictor are avoided.

Example
>> load spmdata
>> NetDef = ['HHHHH';'L----'] ;
>> NN=[2 2 2 1] ;
>> trparms = [100 0 1 1e-3] ;
>> [W1,W2,Chat,critvec,iter,lambda] = ...

nnarmax1(NetDef,NN,[] ,[] ,[] ,trparms,10,y1,u1);
>> [yhat,NSSE]=nnvalid('nnarmax1',NetDef,NN,W1,W2,Chat,y2,u2);

Algorithm
The name NNARMAX has been chosen because the regressors equal those of
an ARMAX model.

See Also
NNRARMX1, NNARMAX2

Reference
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987.

J. Sjöberg, H. Hjalmerson, L. Ljung: “ Neural Networks in System
Identification,” Preprints 10th IFAC symposium on SYSID, Copenhagen.
Vol.2, pp. 49-71.

O. Sørensen: “ Neural Networks in Control Applications,” Ph.D. Thesis.
Aalborg University, Department of Control Engineering, 1994.

nnarmax2

2-28

nnarmax2
Purpose

Identify a Neural Network ARMAX (or ARMA) model.

Synopsis
[W1,W2,critvec,iteration,lambda]=...
 nnarmax2(NetDef,NN,W1,W2,trparms,skip,Y,U)

Input
U: Input (= control signal) (left out in the nnarma case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]
NN: NN=[na nb nc nk].

na = # of past outputs used for determining the prediction.
nb = # of past inputs.
nc = # of past residuals (= order of C).
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as there
are inputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W1)= [(# of hidden units) * (na+nb+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as [] , they are initialized automatically.

trparms: Contains parameters associated with the training (see marq).
 if trparms=[] is passed the default trparms=[500 0 1 0] is used.
skip: Don’t use the first ‘skip’ samples for training to reduce the influence

from the transient occuring because of the unknown initial prediction
errors and gradient. If skip=[] is passed the default value skip=0 will
be used.

See the function MARQ for a more detailed explanation of ‘ trparms’.

NB! For time series (NNARMA models) NN=[na nc] only.

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Determines a nonlinear ARMAX model:

nnarmax2

Neural Network Based System Identification Toolbox User’s Guide 2-29

()�() (), , (), (), , (), (), , ()y t g y t y t n u t n u t n n t t na k b k cθ ε ε= − − − − − + − −1 1 1� � �
of a dynamic system by training a two layer neural network with the
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (MISO).

Example
>> load spmdata
>> NetDef = ['HHHHH';'L----'] ;
>> NN=[2 2 2 1] ;
>> trparms = [100 0 1 1e-3] ;
>> [W1,W2,critvec,iter,lambda] = ...

nnarmax2(NetDef,NN,[] ,[] ,trparms,10,y1,u1);
>> [yhat,NSSE] = nnvalid('nnarmax2',NetDef,NN,W1,W2,y2,u2);

Algorithm
The name NNARMAX has been chosen because the regressors equal those of
an ARMAX model.

See Also
NNRARMX2, NNARMAX1

Reference
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987.

J. Sjöberg, H. Hjalmerson, L. Ljung: “ Neural Networks in System
Identification,” Preprints 10th IFAC symposium on SYSID, Copenhagen.
Vol.2, pp. 49-71.

O. Sørensen: “ Neural Networks in Control Applications,” Ph.D. Thesis.
Aalborg University, Department of Control Engineering, 1994.

nnarx

2-30

nnarx
Purpose

Identify a Neural Network ARX (or AR) model.

Synopsis
[W1,W2,critvec,iteration,lambda]=nnarx(NetDef,NN,W1,W2,trparms,Y,U)

Input
U: Input (= control signal) (left out in the nnar case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]
NN: NN=[na nb nk].

na = # of past outputs used for determining the prediction.
nb = # of past inputs.
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as there
are inputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W1)= [(# of hidden units) * (na+nb+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as [] , they are initialized automatically.

trparms: Contains parameters associated with the training (see marq).
 if trparms=[] is passed the default trparms=[500 0 1 0] is used.

See the function MARQ for a more detailed explanation of ‘ trparms’.

NB! For time series (NNAR models) NN=na.

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Determines a nonlinear ARX model:

()�() (), , (), (), , ()y t g y t y t n u t n u t n na k b kθ = − − − − − +1 1� �
of a dynamic system by training a two layer neural network with the
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (MISO).

nnarx

Neural Network Based System Identification Toolbox User’s Guide 2-31

Examples
>> load spmdata
>> NetDef = ['HHHH’; 'L---'] ;
>> NN=[2 2 1] ;
>> trparms = [300 0 1 1e-3] ;
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[] ,[] ,trparms,y1,u1);
>> [yhat,NSSE]=nnvalid('nnarx',NetDef,NN,W1,W2,y2,u2);

Algorithm
The name NNARX has been chosen because the regressors equal those of an
ARX model.

See Also
NNRARX, NNPRUNE.

Reference
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987.

J. Sjöberg, H. Hjalmerson, L. Ljung: “ Neural Networks in System
Identification,” Preprints 10th IFAC symposium on SYSID, Copenhagen.
Vol.2, pp. 49-71.

O. Sørensen: “ Neural Networks in Control Applications,” Ph.D. Thesis,
Aalborg University, Department of Control Engineering, 1994.

nnarxm

2-32

nnarxm
Purpose

Identify a multi-output Neural Network ARX (or AR) model.

Synopsis
[W1,W2,critvec,iteration,lambda]=...
 nnarxm(NetDef,NN,W1,W2,trparms,Gamma,Y,U)

Input
U: Input (= control signal) (left out in the nnar case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [(outputs) * (# of data)]
NN: NN=[na1 nb1 nk1;na2 nb2 nk2;...].

naX = # of past outputs used for determining the prediction.
nbX = # of past inputs.
nkX = time delay (usually 1).
For multi-input systems, nbX and nkX contain as many columns as
there are inputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W1)= [(# of hidden units) * (na1+nb1+na2+nb2+...+1)]
dim(W2)=[(outputs) * (# of hidden units)]
If they are passed as [] , they are initialized automatically.

Gamma: Inverse weighting matrix (usually the covariance of the noise).
trparms: Contains parameters associated with the training (see MARQ).
 if trparms=[] is passed the default trparms=[500 0 1 0] is used.

See the function MARQ for a more detailed explanation of ‘ trparms’.

NB! For time series (NNAR models) NN=na.

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Determines a nonlinear ARX model:

()�() (), , (), (), , ()y t g y t y t n u t n u t n na k b kθ = − − − − − +1 1� �
of a dynamic system with multiple outputs by training a two layer neural
network with the Levenberg-Marquardt method. The function can handle
multi-input multi-output systems (MIMO).

nnarx

Neural Network Based System Identification Toolbox User’s Guide 2-33

Examples
>> load spmdata
>> Y1=[y1;y1*3] ;
>> Y2=[y2;y2*3] ;
>> NetDef = ['HHHH’; 'L---'] ;
>> NN=[2 2 1;2 0 0] ;
>> trparms = [100 0 1 1e-3] ;
>> [W1,W2]=nnarxm(NetDef,NN,[] ,[] ,trparms,eye(2),Y1,u1);
>> [yhat,NSSE]=nnvalid('nnarxm',NetDef,NN,W1,W2,eye(2),Y2,u2);

In this example NN=[2 2 1;2 0 0] . This does not mean that output 2 does not
depend on past inputs at all. If NN had been chosen to [2 2 1;2 2 1] the input
signal would then have entered the network twice. This is of course not
relevant except when physical knowledge motivates that an output depends on
certain inputs and delayed inputs and it should only be used when appropriate
entries in W1 and W2 are set to 0.

Algorithm
The network is trained to minimize the criterion

()�() (), , (), (), , ()y t g y t y t n u t n u t n na k b kθ = − − − − − +1 1� �
using a Levenberg-Marquardt algorithm. The weighting matrix Gamma is
usually chosen as the noise covariance. This can be estimated with the function
NNIGLS.

See Also
NNVALID, NNIGLS, NNARX.

Reference
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987.

nneval

2-34

nneval
Purpose

Validation of feedforward neural networks.

Synopsis
[Yhat,E,NSSE] = nneval(NetDef,W1,W2,PHI,Y)

Inputs
See for example one of the functions: MARQ, RPE, BATBP, INCBP.

Outputs
Yhat: Network predictions.
E: Prediction errors.
NSSE:Normalized sum of squared errors (SSE/2N).

Description
The function validates models trained with MARQ, RPE, BATBP, INCBP,
MARQLM. The following plots are produced:

- Output together with predicted output.
- Prediction error.
- Auto-correlation function of prediction error.
- A histogram showing the distribution of the prediction errors

Example
>> PHI = 2*pi* rand(1,300);
>> Y = sin(PHI) + 0.2*randn(1,300);
>> W1 = rand(5,2);
>> W2 = rand(1,6);
>> NetDef = [‘HHHHH’;’ L----’] ;
>> trparms = [300 0.02 1 0] ;
>> [W1,W2,critvec,iter,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms);
>> PHI2 = 2*pi* rand(1,300);
>> Y2 = sin(PHI2) + 0.2*randn(1,length(PHI2);
>> nneval(NetDef,W1,W2,PHI2,Y2,trparms);

See Also
NNVALID, IFVALID, IOLEVAL.

nnfpe

Neural Network Based System Identification Toolbox User’s Guide 2-35

nnfpe
Purpose

Final Prediction Error estimate (FPE) for I/O models of dynamic systems.

Synopsis
[FPE,deff,varest,H] =...
 nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat)

Input
See the function that was used for creating the model.The argument Chat
should only be included if method='nnarmax1'.

Output
FPE: The Final prediction error estimate.
deff : The effective number of parameters.
varest: Estimate of noise variance.
H: The Gauss-Newton Hessian.

Description
The function calculates Akaike’s final prediction error estimate of the average
generalization error for models generated by NNARX, NNOE,
NNARMAX1+2. The function produces the final prediction error estimate
(FPE), the effective number of weights in the network if the network has been
trained with weight decay, an estimate of the noise variance, and the Gauss-
Newton Hessian.

See Also
LOO, FPE.

References
J. Larsen & L.K. Hansen: “ Generalization Performance of Regularized Neural
Network Models." Proc. of the IEEE Workshop on Neural networks for Signal
Proc. IV, Piscataway, New Jersey, pp.42-51, 1994.

nnigls

2-36

nnigls
Purpose

Iterated Generalized Least Squares training of a NNARX model with multiple
outputs.

Synopsis
[W1,W2,lambda,Gamma]=...
 nnigls(NetDef,NN,W1,W2,trparms,repeat,Gamma,Y,U)

Input
U,Y,NN,W1,W2: See NNARXM
repeat: Repeat the IGLS procedure repeat times. If passed as [] it is set to 5.
Gamma: Initial estimate of the covariance matrix for the noise. If passed as []

it is set to the identity matrix.
trparms: Vector containing parameters associated with the training (see

MARQ). Default values (obtained if trparms=[]): trparms=[50 0 1 0]

Output
W1, W2, lambda: See the function NNARXM.
Gamma: The estimated covariance matrix.

Description
A multi-output NNARX model and the noise covariance matrix are estimated
with an iterative relaxation procedure.

It is important to notice that the model returned from this function will produce
predictions of scaled outputs (see the Algorithm paragraph). It is necessary to
multiply the output by sqrtm(Gamma) to obtain the unscaled predictions. If the
network has linear output units one can instead scale the hidden-to-output layer
weights: W2= sqrtm(Gamma)*W2.

Algorithm
The implemented IGLS procedure is very simple
for j=1:repeat,

Train the network
Estimate the covariance matrix

end

The network is trained with the function MARQ according to the criterion

nnfpe

Neural Network Based System Identification Toolbox User’s Guide 2-37

() ()

∑

∑

=

−
−

=

−
−

Λ=

−Λ−==

N

t
j

T

N

t
j

TN
Nj

tt
N

tytytyty
N

ZV

1

1
1

1

1
1

),(ˆ),(
2

1

)(ˆ)(ˆ)(ˆ)(
2

1
),(ˆ

θεθε

θθθθ

and the covariance matrix is estimated as

∑
=

=Λ
N

t

jTj
j tt

N 1

)()()ˆ,()ˆ,(
1ˆ θεθε

To reduce the amount of computations the network is trained by first scaling
the outputs as

)()(tyty Σ=
where

ΣΣ=Λ T

and subsequently train the network according to

() ()∑
=

−−==
N

t

TN
Nj tytytyty

N
ZV

1

)(ˆ)()(ˆ)(
2

1
),(ˆ θθθθ

If the network has linear output units, W2 should be scaled by 22 1WuW −Σ= .

See Also
NNARXM, NNVALID, MARQ, IGLS.

Reference
T.J Fog, J. Larsen, L.K. Hansen: Training and Evaluation of Neural Networks
for Multi -Variate Time-Series Processing. Proc. IEEE International
Conference on Neural Networks, Perth, Australia.

nniol

2-38

nniol
Purpose

Identify a neural network model well-suited for control by discrete input-output
linearization.

Synopsis
[W1f,W2f,W1g,W2g,critvec,iteration,lambda]=...
 nniol(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,trparms,Y,U)

Input
U: Input data (= control signal) (left out in the nnarma case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]
NN: NN=[na nb nk].

na = # of past outputs used for determining the prediction.
nb = # of past inputs.
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as
there are inputs.

NetDeff: Architecture of network used for modelli ng the function f (see
below).

NetDefg: Archtecture of network used for modelli ng the function g.
W1f,W2f: Input-to-hidden layer and hidden-to-output layer weights for
W1g,W2g the "f" and "g" nets, respectively.

dim(W1f / W1g) = [(# of hidden units) * (na+nb)]
dim(W2f / W2g) = [1 * (# of hidden units)]
If the weight matrices are passed as [] they will be initialized
automatically.

trparms: Contains parameters associated with the training (see MARQ)
 if trparms=[] is passed the default trparms = [500 0 1 0] is used.

See function MARQ for a more detailed explanation of ‘ trparms’.

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Train a neural network to model a dynamic system on the following form:

()
()

�y t f y t y t n u t n u t n n

g y t y t n u t n u t n n u t n

a k k b

a k k b k

() = (-), , (-), (- -),..., (- - +)

+ (-),.., (-), (- -),..., (- - +) (-)

θ 1 1 1

1 1 1

�

nniol

Neural Network Based System Identification Toolbox User’s Guide 2-39

with the Levenberg-Marquardt method. This type of model is particularly
relevant in the context of control by discrete input-output linearization.

Examples
>> load spmdata
>> NetDeff = ['HHHHH';'L----'] ;
>> NetDefg = ['HHH';'L--'] ;
>> NN=[2 2 1] ;
>> trparms = [300 0 1 1e-3] ;
>> [W1f,W2f,W1g,W2g,critvec,iter,lambda] =...

nniol(NetDeff,NetDefg,NN,[] ,[] ,[] ,[] ,trparms,y1,u1);
>> [yhat,NSSE]=ioleval(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,y2,u2);

See Also
IOLEVAL.

nniol

2-40

nnloo
Purpose

Estimate the average generalization error for a NNARX model of a dynamic
system by leave-one-out cross-validaton.

Synopsis
Eloo =nnloo(NetDef,NN,W1,W2,trparms,U,Y)

Input
NetDef, W1, W2, NN
U, Y, trparms : See the function NNARX
If the variable max_iter=0 in trparms, linear unlearning is used for obtaining an
cheap approximation to the LOO estimate. If max_iter>0 the network will be
retrained a maximum of max_iter iterations for each input-output pair that is
left out.

Output
Eloo: The leave-one-out cross-validation estimate of the average

generalization error

Description
LOO calculates an approximation to the leave-one-out estimate of the average
generalization error.

Algorithm
When max_iter=0 so-called ” linear unlearning” is used to achieve a quick
approximation to the LOO-estimate. This approximation is much easier to
compute than the true LOO-estimate, but is in general less reliable. Typically it
is comparable to the FPE-estimate. See the reference below for a derivation.

See Also
NNFPE for Akaike’s final prediction error estimate.

Reference
L.K. Hansen and J. Larsen (1995): "Linear Unlearning for Cross-Validation,"
submitted for Advances in Computational Mathematics, 1995

nnoe

Neural Network Based System Identification Toolbox User’s Guide 2-41

nnoe
Purpose

Identify a neural network output error model.

Synopsis
[W1,W2,critvec,iter,lambda]=nnoe(NetDef,NN,W1,W2,trparms,skip,Y,U)

Input
U: Input data (= control signal) (left out in the nnarma case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]
NN: NN=[na nb nk].

na = # of past predictions used for determining the prediction.
nb = # of past inputs.
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as there
are inputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W1)= [(# of hidden units) * (na+nb+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as [] , they are initialized automatically.

trparms: Contains parameters associated with the training (see marq).
 if trparms=[] is passed the default trparms=[500 0 1 0] is used.
skip: Don't use the first 'skip' samples in the training to reduce the

influence from the transient occuring because of unknown initial
predictions and gradient. If skip=[] is passed the default skip=0 is
used.

See function MARQ for a more detailed explanation of ‘ trparms’.

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Determines a nonlinear output error (OE) model:

()�() �(), , �(), (), , ()y t g y t y t n u t n u t n na k b kθ θ θ= − − − − − +1 1� �
of a dynamic system by training a two layer neural network with the
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (MISO).

nnoe

2-42

Examples
>> load spmdata
>> NetDef = ['HHHH’; 'L---'] ;
>> NN=[2 2 1] ;
>> trparms = [300 0 1 1e-3] ;
>> [W1,W2,critvec,iter,lambda]=nnoe(NetDef,NN,[] ,[] ,trparms,10,y1,u1);
>> [yhat,NSSE]=nnvalid('nnoe',NetDef,NN,W1,W2,y2,u2);

Algorithm
The name NNOE is chosen because the regressors are similar to those of an
output error (OE) model.

See Also
NNPRUNE, NNVALID.

Reference
L. Ljung:
“ System Identification - Theory for the User,” Prentice-Hall, 1987.

J. Sjöberg, H. Hjalmerson, L. Ljung: “ Neural Networks in System
Identification,” Preprints 10th IFAC symposium on SYSID, Copenhagen.
Vol.2, pp. 49-71.

O. Sørensen: “ Neural Networks in Control Applications,” Ph.D. Thesis.
Aalborg University, Department of Control Engineering, 1994.

nnprune

Neural Network Based System Identification Toolbox User’s Guide 2-43

nnprune
Purpose

Prune neural network models of dynamic systems with the Optimal Brain
Surgeon (OBS).

Synopsis
[thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec] = ...
 nnprune(method,NetDef,W1,W2,U,Y,NN,trparms,prparms,U2,Y2,skip,Chat)

Input
method: The function used for creating the model. For example

method='nnarx' or method='nnoe'.
NetDef, W1, W2,
U, Y, trparms: See the function used for creating the model.
U2,Y2 (optional): Test data. This can be used for pointing out the the optimal

network architecture. Pass two [] 's if a test set is not
available.

skip (optional): See for example NNOE or NNARMAX1/2. If passed as []
it is set to 0.

Chat (optional): See NNARMAX1
prparms: Parameters associated with the pruning session.
 prparms = [iter RePercent]

iter: Max. number of retraining iterations.
RePercent : Prune 'RePercent' percent of the remaining

weights (0 = prune one weight at a time).
If passed as [] is will be reset to prparms = [50 0].

 Output
 thd: Matrix containing all the parameter vectors
 NSSEvec: Vector containing the normalized sum of squared errors

(SSE/2N), the training error, after each weight elimination
 FPEvec: Contains the FPE estimate of the average generalization error
 NSSEtestvec: Contains the test error (SSE/2N for test set).
 deff_vec: Contains the "effective" number of weights.
 pvec: Index into the above vectors.

Description
This function applies the Optimal Brain Surgeon (OBS) strategy for pruning
neural network input-output models of dynamic systems. That is, models

nnprune

2-44

produced by one of the functions: NNARX, NNARMAX1, NNARMAX2,
NNOE. Two different procedures are possible:
• Eliminate one weight, retrain, eliminate one weight, retrain,
• Eliminate 5% (or some other percentage) of the remaining weights, retrain,

eliminate 5% of the remaning weights,retrain,

The function will return a matrix containing the parameter vectors (a vector
containing all weights), obtained after each retraining. The optimal parameter
vector is then chosen afterwards. For example as the one representing the
network leading to the smallest FPE or the one leading to the smallest test error
(if a test set is available). After having determined the optimal number of
weights, the weight matrices are extracted from the thd-matrix with the
function NETSTRUC. If a NNARMAX1 model has been pruned, remember to
remove the bottom nc rows from thd first since these contain the coefficients of
the C-polynomial.

It is important that the network is trained to the minimum of the criterion
before the function is applied.

Example
Prune nnarx model with OBS
>> [thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec] = ...
 nnprune(‘nnarx’ ,NetDef,W1,W2,U,Y,NN,trparms,[] ,U2,Y2);

Find index to minimum FPE
>> [minfpe,index] = min(fpevec(pvec));
>> index = pvec(index);

Extract weights from matrix of parameter vectors
>> [W1,W2] = netstruc(NetDef,thd,index);
>> drawnet(W1,W2,eps)

Algorithm
If the network has been trained without regularization (weight decay), the basic
OBS scheme of Hassibi and Stork is used. To avoid numerical problems, the
inverse (Gauss-Newton) Hessian is approximated by the recursive method
described in the paper (see also RPE). If regularization was used when training
the network the saliences are calculated as the prediced increase in the
unregularized portion of the criterion as described by Hansen & Pedersen. If
more than one weight is eliminated between each retraining the inverse Hessian
after each weight elimination is calculated as the Schur complement of the
previous inverse Hessian (see Pedersen et al.).

nnprune

Neural Network Based System Identification Toolbox User’s Guide 2-45

The OBS-scheme has been implemented so that it is impossible to have hidden
units without having weights leading to as well as from them. If a hidden unit
has only one weight connecting it to the input layer and one weight connecting
it to the output layer the, the entire unit will be removed if it has the smallest
total saliency.

See Also
NETSTRUC, OBDPRUNE, OBSPRUNE.

References
L.K. Hansen & M. W. Pedersen: “ Controlled Growth of Cascade Correlation
Nets,” Proc. ICANN ‘94, Sorrento, Italy, 1994, Eds. M. Marinaro & P.G.
Morasso, pp. 797-800.

B. Hassibi, D.G. Stork: “ Second Order Derivatives for Network Pruning:
Optimal Brain Surgeon,” NIPS 5, Eds. S.J. Hanson et al., 164, San Mateo,
Morgan Kaufmann, 1993.

M.W. Pedersen, L.K. Hansen, J. Larsen: “ Pruning With Generalization Based
Weight Saliences: γOBD, γOBS,” 1995.

nnrarmx1, nnrarmx2, nnrarx

2-46

nnrarmx1, nnrarmx2, nnrarx
Purpose

Identify a neural network model of a dynamic system by using a recursive
algorithm.

Synopsis
[W1,W2,Chat,critvec,iteration]=...

nnrarmx1(NetDef,NN,W1,W2,Chat,trparms,method,Y,U)

[W1,W2,critvec,iteration]=...
nnrarmx2(NetDef,NN,W1,W2,trparms,method,Y,U)

[W1,W2,critvec,iteration,lambda]=...
nnrarx(NetDef,NN,W1,W2,trparms,method,Y,U)

Input
See the “batch” counterparts (NNARMAX1, NNARMAX2, NNARX), except
for the arguments “method” and “trparms”:

method : Training method (ff, ct, efra)
method = 'ff' (forgetting factor)

trparms = [max_iter stop_crit p0 lambda]
method = 'ct' (constant trace)

trparms = [max_iter stop_crit alpha_max alpha_min]
method = 'efra' (exponential forgetting and resetting algorithm)

trparms = [max_iter stop_crit alpha beta delta lambda]

Where
max_iter: Maximum # of iterations.
stop_crit: Stop training if criterion is below this value.
p0: The covariance matrix is initialized to p0*I.
lambda: Forgetting factor.
alpha_max: Max. eigenvalue of P matrix.
alpha_min: Min. eigenvalue of P matrix.
alpha, beta, delta: EFRA parameters.

Output
See their batch counterparts.

nnrarmx1, nnrarmx2, nnrarx

Neural Network Based System Identification Toolbox User’s Guide 2-47

Description
The three functions are the recursive counterparts to NNARMAX1,
NNARMAX2, and NNARX, respectively. The networks are trained with a
recursive Gauss-Newton based method (see RPE) instead of a batch method.
Most often the disadvantages of a recursive method are too overwhelming
compared to a batch method. The recursive methods can be useful for very
large networks+data sets since lack of memory in this case can be a problem.
They can also be advantageous compared to batch training when there is high
degree of redundancy in the data set.

Example
>> load spmdata
>> NetDef = ['HHHHH'; 'L----'] ;
>> NN=[2 2 1] ;
>> trparms = [100 0 1e3 0.995] ;
>> [W1,W2,critvec,iter]=nnrarx(NetDef,NN,[] ,[] ,trparms,'ff',y1,u1);
>> [yhat,NSSE]=nnvalid('nnrarx',NetDef,NN,W1,W2,y2,u2);

Algorithm
Be careful not to choose the forgetting factor too small when using the
forgetting factor method. Because of the many weights usually present in the
network, some eigenvalues in the covariance matrix (“the inverse Hessian”) will
grow uncontrollable.

See Also
NNARMAX1, NNARMAX2, NNARX.

References
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987.

J.E. Parkum: “ Recursive Identification of Time-Varying Systems,” Ph.D.
thesis, IMM, Technical University of Denmark, 1992.

M.E. Salgado, G. Goodwin, R.H. Middleton: “ Modified Least Squares
Algorithm Incorporating Exponential Forgetting And Resetting,” Int. J.
Control, 47, pp. 477-491.

nnsimul

2-48

nnsimul
Purpose

Simulate model of dynamic system from sequence of controls.

Synopsis
Network generated by NNARX (or NNRARX):

Ysim = nnsimul('nnarx',NetDef,NN,W1,W2,Y,U);

(likewise for networks generated by NNARMAX1+2 and NNOE)

Network generated by NNSSIF:
Ysim = nnsimul('nnssif',NetDef,nx,W1,W2,Y,U,obsidx);

Input
See nnvalid/ifvalid

Output
Ysim: Vector containing simulated outputs.

NB! The function does not work for models generated by NNIOL.

Description
Simulate a neural network model of a dynamic system from a sequence of
controls alone (without using the observed outputs). The simulated output is
compared to the observed output. For NNARMAX1+2 models the past
residuals are assumed to be 0.

Examples
>> load spmdata
>> NetDef = ['HHHH’; 'L---'] ;
>> NN=[2 2 1] ;
>> trparms = [300 0 1 1e-3] ;
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[] ,[] ,trparms,y1,u1);
>> ysim=nnsimul('nnarx',NetDef,NN,W1,W2,y1,u1);

nnssif

Neural Network Based System Identification Toolbox User’s Guide 2-49

nnssif
Purpose

Identify a neural network model on state space innovations form.

Synopsis
[W1,W2,obsidx,critvec,iteration,lambda]=...
 nnssif(NetDef,nx,W1,W2,obsidx,trparms,skip,Y,U)

Inputs:
U: Input data (= control signal). dim(U)=[(# of inputs) * (# of data)]
Y: Output data. dim(Y)=[1 * (# of data)]
nx: # of states (= the order of the system)
W1,W2: Input-to-hidden layer and hidden-to-output layer weights.

dim(W1)= [(# of hidden units) * (nx+inputs+outputs+1)]
dim(W2)=[nx * (# of hidden units+1)]

 If they are passed as [] they are initialized automatically.
obsidx: Pseudo-observabili ty indices. Their sum must equal nx!

If passed as [] a particular set of indices is selected.
trparms: Contains parameters associated with the training (see marq)

if trparms=[] is passed the default setting trparms = [500 0 1 0] is
used.

skip: Don't use the first 'skip' samples for training to reduce the influence
from the transient occuring because of unknown initial states,
prediction error and gradient. If skip=[] it is reset to skip=0.

Description
Determines a nonlinear state space model of a dynamic system:

()�(,) �(,), (), ()

�() �(,)

x t g x t u t t

y t Cx t

+ = −

=

1 1θ θ ε θ

θ
The neural network is trained with the Levenberg-Marquardt method. The
function can handle multi-input multi-output systems (MIMO).

NB! The function does not work for time series!

Examples
>> load spmdata
>> NetDef = ['HHHH';'LL--'] ;
>> trparms = [100 0 1 1e-4] ;

nnssif

2-50

>> [W1,W2,obsidx,critvec,iter,lambda] =...
nnssif(NetDef,2,[] ,[] ,[] ,trparms,10,y1,u1);

>> [yhat,NSSE]=ifvalid(NetDef,2,W1,W2,obsidx,y2,u2);

Algorithm
The name NNSSIF has been chosen because the regressors equal those of a
linear state space innovations form (the Kalman filter).

Study Ljung for an explanation of overlapping parametrizations and a definition
of pseudo-observabili ty indices.

See Also
IFVALID.

Reference
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987.

O. Sørensen: “ Neural Networks in Control Applications,” Ph.D. Thesis.
Aalborg University, Department of Control Engineering, 1994.

nnvalid

Neural Network Based System Identification Toolbox User’s Guide 2-51

nnvalid
Purpose

Validate neural network input-output models of dynamic systems.

Synopsis
Network generated by NNARX (or NNRARX):

[Yhat,NSSE] = nnvalid('nnarx',NetDef,NN,W1,W2,Y,U)

Network generated by NNARMAX1 (or NNRARMX1):
[Yhat,NSSE] = nnvalid('nnarmax1',NetDef,NN,W1,W2,C,Y,U)

Network generated by NNARMAX2 (or NNRARMX2):
 [Yhat,NSSE] = nnvalid('nnarmax2',NetDef,NN,W1,W2,Y,U)

Network generated by NNOE:
[Yhat,NSSE] = nnvalid('nnoe',NetDef,NN,W1,W2,Y,U)

Network generated by NNARXM:
[Yhat,NSSE] = nnvalid('nnarxm',NetDef,NN,W1,W2,Gamma,Y,U)

Input
See the function used for generating the model.

NB! For time series U is left out!

Output
Yhat: Network predictions.
NSSE: Normalized sum of squared errors.

Description
The function validate models that have been generated by one of the functions
NNARX(M), NNRARX, NNARMAX1+2, NNRARMX1+2, or NNOE.

The following plots are produced:
- Observed output together with predicted output.
- Prediction error.
- Auto correlation function of prediction error and cross-correlation between

prediction error and input.
- A histogram showing the distribution of the prediction errors.
- Coefficients of extracted linear models.

nnvalid

2-52

Example
>> load spmdata
>> NetDef = ['HHHH’; 'L---'] ;
>> NN=[2 2 1] ;
>> trparms = [300 0 1 1e-3] ;
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[] ,[] ,trparms,y1,u1);
>> [yhat,NSSE]=nnvalid('nnarx',NetDef,NN,W1,W2,y2,u2);

obdprune

Neural Network Based System Identification Toolbox User’s Guide 2-53

obdprune
Purpose

Prune ordinary feedforward networks with Optimal Brain Damage (OBD).

Synopsis
[thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec]=...
 obdprune(NetDef,W1,W2,PHI,Y,trparms,prparms,PHI2,Y2)

Input
NetDef, W1, W2,
PHI, Y, trparms: See for example the function MARQ.
PHI2,Y2 (optional): Test data. This can be used as an indicator for pointing

out the optimal network architecture.
prparms: Parameters associated with the pruning session.
 prparms = [iter RePercent]

iter: Max. number of retraining iterations.
RePercent : Prune 'RePercent' percent of the remaining

weights (0 = prune one weight at a time).
If passed as [] it will be reset to prparms = [50 0].

 Output
 thd: Matrix containing all the parameter vectors
 NSSEvec: Vector containing normalized sum of squared errors (SSE/2N),

the training error, after each weight elimination.
 FPEvec: Contains the FPE estimate of the average generalization error
 NSSEtestvec: Contains the test error (SSE/2N for the test set).
 deff_vec: Contains the “effective” number of weights.
 pvec: Index into the above vectors.

Description
This function applies the Optimal Brain Damage (OBD) strategy for pruning
feed-forward neural networks. Two different prucedures are possible:
• Eliminate one weight, retrain, eliminate one weight, retrain,
• Eliminate 5% (or some other percentage) of the remaining weights, retrain,

eliminate 5% of the remaning weights,retrain,

The retraining is done with the Levenberg-Marquardt method in MARQ.

The function will return a matrix containing the parameter vectors (a vector
containing all weights), obtained after each retraining. The optimal parameter

obdprune

2-54

vector is then chosen afterwards. For example as the one representing the
network leading to the smallest FPE or the one leading to the smallest test error
(if a test set is available). After having determined the optimal number of
weights, the weight matrices are extracted from the thd-matrix with the
function NETSTRUC.

Example
Prune network with OBD
>> [thd,tre,fpevec,tee,deff,pvec]=...

obdprune(NetDef,W1,W2,PHI1,Y1,trparms,[50 5] ,PHI2,Y2)

Find index to minimum FPE
>> [minfpe,index] = min(fpevec(pvec));
>> index = pvec(index);

Extract weights from matrix of parameter vectors
>> [W1,W2] = netstruc(NetDef,thd,index);
>> drawnet(W1,W2,eps)

See Also
NETSTRUC, OBSPRUNE, NNPRUNE.

References
Y. Le Cun, J:S. Denker, S.A Solla: “ Optimal Brain Damage,” Advances in
Neural Information Processing Systems, Denver 1989, ed. D. Touretzsky,
Morgan Kaufmann, pp. 598-605.

C. Svarer, L.K. Hansen, J. Larsen: “ On Design and evaluation of Tapped-
Delay Neural Network Architectures,” The 1993 IEEE Int. Conf. on Neural
networks, San Francisco, Eds. H.R. Berenji et al., pp. 45-51.

obsprune

Neural Network Based System Identification Toolbox User’s Guide 2-55

obsprune
Purpose

Prune ordinary feedforward networks with Optimal Brain Surgeon (OBS).

Synopsis
[thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec]=...
 obsprune(NetDef,W1,W2,PHI,Y,trparms,prparms,PHI2,Y2)

Input
NetDef, W1, W2,
PHI, Y, trparms: See for example the function MARQ.
PHI2,Y2 (optional): Test data. This can be used as an indicator for pointing

out the optimal network architecture.
prparms: Parameters associated with the pruning session.
 prparms = [iter RePercent]

iter: Max. number of retraining iterations.
RePercent : Prune 'RePercent' percent of the remaining

weights (0 = prune one weight at a time).
If passed as [] it will be reset to prparms = [50 0].

 Output
 thd: Matrix containing all the parameter vectors
 NSSEvec: Vector containing normalized sum of squared errors (SSE/2N),

the training error, after each weight elimination.
 FPEvec: Contains the FPE estimate of the average generalization error
 NSSEtestvec: Contains the test error (SSE/2N for the test set).
 deff_vec: Contains the “effective” number of weights.
 pvec: Index into the above vectors.

Description
This function applies the Optimal Brain Surgeon (OBS) strategy for pruning
feed forward neural networks. Two different procedures are possible:
• Eliminate one weight, retrain, eliminate one weight, retrain,
• Eliminate 5% (or some other percentage) of the remaining weights, retrain,

eliminate 5% of the remaning weights,retrain,

The retraining is done with the Levenberg-Marquardt method in MARQ.

The function will return a matrix containing the parameter vectors (a vector
containing all weights) obtained after each retraining. The optimal parameter

obsprune

2-56

vector is then chosen afterwards. For example as the one representing the
network leading to the smallest FPE or the one leading to the smallest test error
(if a test set is available). After having determined the optimal number of
weights, the weight matrices are extracted from the thd-matrix with the
function NETSTRUC.

Examples
Prune network with OBS
>> [thd,tre,fpevec,tee,deff,pvec]=...

obsprune(NetDef,W1,W2,PHI1,Y1,trparms,[50 5] ,PHI2,Y2)

Find index to minimum FPE
>> [minfpe,index] = min(fpevec(pvec));
>> index = pvec(index);

Extract weights from matrix of parameter vectors
>> [W1,W2] = netstruc(NetDef,thd,index);
>> drawnet(W1,W2,eps)

Algorithm
If the network has been trained without regularization (weight decay), the basic
OBS scheme of Hassibi and Stork is used. To avoid numerical problems, the
inverse (Gauss-Newton) Hessian is approximated by the recursive method
described in the paper (see also RPE). If regularization was used when training
the network, the saliences are calculated as the prediced increase in the training
error as described by Hansen & Pedersen. If more than one weight is eliminated
between each retraining the inverse Hessian is calculated after each weight
elimination as the Schur complement of the previous inverse Hessian (see
Pedersen et al.).

The OBS-scheme has been implemented so that it is impossible to have hidden
units without weights leading to as well as from them. If a hidden unit has only
one weight connecting it to the input or one weight connecting it to the output
layer, the saliency for removing the entire unit is calculated. If the entire unit-
saliency is smaller than any of the other saliencies, the entire unit will be
removed.

See Also
NETSTRUC, OBDPRUNE, NNPRUNE.

obsprune

Neural Network Based System Identification Toolbox User’s Guide 2-57

References
L.K. Hansen & M. W. Pedersen: “ Controlled Growth of Cascade Correlation
Nets,” Proc. ICANN ‘94, Sorrento, Italy, 1994, Eds. M. Marinaro & P.G.
Morasso, pp. 797-800.

B. Hassibi, D.G. Stork: “ Second Order Derivatives for Network Pruning:
Optimal Brain Surgeon,” NIPS 5, Eds. S.J. Hanson et al., 164, San Mateo,
Morgan Kaufmann, 1993.

M.W. Pedersen, L.K. Hansen, J. Larsen: “ Pruning With Generalization Based
Weight Saliences: γOBD, γOBS,” 1995.

pmntanh

2-58

pmntanh
Purpose

Fast hyperbolic tangent function.

Synopsis
y=pmntanh(x)

Description
The function replaces the TANH function provided by MATLAB to increase
speed. This is particularly relevant for older versions of MATLAB where the
implementation of tanh is relatively slow.

rpe

Neural Network Based System Identification Toolbox User’s Guide 2-59

rpe
Purpose

Recursive prediction error method.

Synopsis
[W1,W2,critvec,iter]=rpe(NetDef,W1,W2,PHI,Y,trparms,method)

Input
NetDef: Network definition.
W1: Input-to-hidden layer weights

dim(W1)=[(# of hidden units) * (inputs + 1)] (1 is due to the bias)
W2: Hidden-to-output layer weights
 dim(W2)=[(outputs) * (# of hidden units + 1)]

PHI: Input data. dim(PHI)=[(inputs) * (# of data)]
Y: Output data. dim(Y)=[(outputs) * (# of data)]
trparms: Vector containing parameters associated with the training.
method: Training method (ff, ct, efra)
method = 'ff ' (forgetting factor)

trparms = [max_iter stop_crit p0 lambda]
method = 'ct' (constant trace)

trparms = [max_iter stop_crit alpha_max alpha_min]
method = 'efra' (exponential forgetting and resetting algorithm)

trparms = [max_iter stop_crit alpha beta delta lambda]

Where
max_iter: Max # of iterations.
stop_crit: Stop training if criterion is below this value.
p0: The covariance matrix is initialized to p0*I.
lambda: Forgetting factor.
alpha_max: Max. eigenvalue of P matrix.
alpha_min: Min. eigenvalue of P matrix.
alpha, beta, delta: EFRA parameters.

Output
W1, W2: Weight matrices obtained by training.
critvec: Vector containing the criterion after each iteration.
iter: # of iterations.

rpe

2-60

Description
Given a set of corresponding input-output pairs and an initial network, a two
layer neural network is trained with the recursive prediction error method
(“recursive Gauss-Newton”). Also pruned, i.e., not fully connected, networks
can be trained. Most often the disadvantages of a recursive method are too
overwhelming compared to a batch method. The recursive methods may
however be relevant for very large networks+data sets where lack of memory is
a problem or when there is a high degree of redundancy in the data set.
Different methods have been implemented with inspiration from adaptive
control: exponential forgetting, constant trace and the so-called exponential
forgetting and resetting algorithm (EFRA).

The activation functions can be either linear or tanh. The network architecture
is defined by the matrix 'NetDef' which has two rows. The first row specifies
the hidden layer while the second specifies the output layer.

E.g.: NetDef = ['LHHHH'
 'LL---']

 (L = linear, H = tanh)

Notice that the bias is included as an extra column in the weight matrices and
that a weight is eliminated (i.e. 0 and not updated) by setting it to zero.

Example
Generate data as sinusiodal+noise
>> PHI = 2*pi* rand(1,300);
>> Y = sin(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y,’+’);

Initialize Network. 5 tanh hidden units, 1 linear output
>> W1 = rand(5,2);
>> W2 = rand(1,6);
>> NetDef = [‘HHHHH’;’ L----’] ;
>> drawnet(W1,W2,eps)
>> trparms = [500 0.02 10 0.995] ;
>> [W1,W2,critvec,iter]=rpe(NetDef,W1,W2,PHI,Y,trparms,’ ff’);

Plot criterion evaluated after each iteration
>> semilogy(critvec); grid;
>> xlabel(‘I teration’);
>> ylabel(‘Training error’)

rpe

Neural Network Based System Identification Toolbox User’s Guide 2-61

Algorithm
Be careful not to select the forgetting factor too small in the forgetting factor
method. Because of the many weights usually present in a network some
eigenvalues of the covariance matrix (“the inverse Hessian”) will grow
uncontrollably.

See Also
MARQ, BATBP, INCBP.

References
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987.

J.E. Parkum: “ Recursive Identification of Time-Varying Systems,” Ph.D.
thesis, IMM, Technical University of Denmark, 1992.

M.E. Salgado, G. Goodwin, R.H. Middleton: “ Modified Least Squares
Algorithm Incorporating Exponential Forgetting And Resetting,” Int. J.
Control, 47, pp. 477-491.

wrescale

2-62

wrescale
Purpose

Rescale weights of the trained network if the training data has been scaled by
function DSCALE.

Synopsis
[W1,W2]=wrescale(W1,W2,Uscale,Yscale,NN)

Input
W1: Input-to-hidden weights of network trained on scaled data.
W2: Hidden-to-output weights.
Uscale: Matrix containing the sample mean and standard deviation for each

input. For time series an empty matrix, [] , is passed.
Yscale: Matrix containing mean and std's for each output.
NN: Vector containing lag spaces, i.e., the number of past signals used as

input to the network (see nnarx, nnarmax, nnoe ..). For ordinary
feedforward networks (“function fitting” type networks) NN is left
out.

Output
W1, W2: Scaled weight matrices.

Description
WRESCALE rescales the weights for networks with LINEAR OUTPUT
UNITS. Don’t use it for networks with tanh output units! The function works
for feedforward networks as well as for input-output models of dynamic
systems (i.e. NNAR(X), NNARMA(X) and NNOE type models). If the
function DSCALE was used for scaling the data to zero mean and unity
variance before training, the weights should be rescaled after training so that
the network can work on unscaled data. Notice that when the function is used
on a pruned network, it will reintroduce the biases removed in the pruning
session.

See Also
DSCALE.

xcorrel

Neural Network Based System Identification Toolbox User’s Guide 2-63

xcorrel
Purpose

Calculate high order cross-correlation functions for input-output models of
dynamic systems.

Synopsis
Network generated by NNARX (or NNRARX):

xcorrel('nnarx',NetDef,NN,W1,W2,Y,U)

Network generated by NNARMAX1 (or NNRARMX1):
xcorrel('nnarmax1',NetDef,NN,W1,W2,C,Y,U)

Network generated by NNARMAX2 (or NNRARMX2):
 xcorrel('nnarmax2',NetDef,NN,W1,W2,Y,U)

Network generated by nnoe:
xcorrel('nnoe',NetDef,NN,W1,W2,Y,U)

Input
See the function used for generating the model.

NB! For time series U is left out!

Description
The function calculates a number of high order cross-correlation functions for
models that have been generated by one of the functions NNARX, NNRARX,
NNARMAX1+2, NNRARMX1+2, or NNOE.

Ideally the prediction errors from the trained neural network model should be
unpredictable from all combinations of past inputs and outputs. A complete
check for independence is of course unfeasible so instead it is common to
investigate a few “wisely” chosen correlation functions.

Plots of the following 6 correlation functions are produced:





≠
=

=
−

−−−
=

∑

∑

=

−

=

0,0

0,1

))ˆ,((

))ˆ,()()ˆ,((
)(ˆ

1

2

1

τ
τ

εθε

εθτεεθε
τ

τ

εε N

t

N

t

t

tt
r

wrescale

2-64

τ
εθε

εθτε
τ

τ

ε ∀=






 −





 −

−−−
=

∑∑

∑

==

−

= ,0

))ˆ,(())((

))ˆ,()()((
)(ˆ

2/1

1

2

2/1

1

2

1

N

t

N

t

N

t
u

tutu

tutu
r

τ
εθε

εθτε
τ

τ

ε ∀=






 −





 −

−−−
=

∑∑

∑

==

−

= ,0

))ˆ,(())((

))ˆ,()()((
)(ˆ

2/1

1

222

2/1

1

222

1

2222

22
N

t

N

t

N

t
u

tutu

tutu
r

τ
εθε

εθτε
τ

τ

ε ∀=






 −





 −

−−−
=

∑∑

∑

==

−

= ,0

))ˆ,(())((

))ˆ,()()((
)(ˆ

2/1

1

2

2/1

1

222

1

22

2
N

t

N

t

N

t
u

tutu

tutu
r

0,0

))(())ˆ,((

))1()()ˆ,((
)(ˆ

2/1

1

2

2/1

1

2

1 ≥=






 −





 −

−−−−
=

∑∑

∑

==

−

= τ
ββεθε

βτβεθε
τ

τ

εβ
N

t

N

t

N

t

tt

tt
r





≠
=

=






 −





 −

−−−
=

∑∑

∑

==

−

=

0,0

0,

))ˆ,(())((

))ˆ,()()((
)(ˆ

2/1

1

222

2/1

1

2

1

22

2 τ
τ

εθεαα

εθτεαα
τ

τ

αε

k

tt

tt
r

N

t

N

t

N

t

τ
θαα

ταα
τ

τ

α ∀=






 −





 −

−−−
=

∑∑

∑

==

−

= ,0

))ˆ,(())((

))()()((
)(ˆ

2/1

1

222

2/1

1

2

1

22

2
N

t

N

t

N

t
u

utut

utut
r

where

)ˆ,()()(θεβ ttut =

)ˆ,()()(θεα ttyt =

2/1

1

2

2/1

1

22

2

))((

))ˆ,((






 −






 −

=

∑

∑

=

=

N

t

N

t

t

t

k

αα

εθε

xcorrel

Neural Network Based System Identification Toolbox User’s Guide 2-65

The overbar specifies the average of a signal

∑
=

=
N

t

tx
N

x
1

)(
1

The correlation functions are displayed along with their 95% confidence
interval.

Notice that NNVALID calculates the auto-correlation function of the
prediction error.

Example
>> load spmdata
>> NetDef = ['HHHH’; 'L---'] ;
>> NN=[2 2 1] ;
>> trparms = [300 0 1 1e-3];
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[] ,[] ,trparms,y1,u1);
>> xcorrel('nnarx',NetDef,NN,W1,W2,y2,u2);

See Also
NNVALID.

Reference
S.A. Billi ngs, Q.M. Zhu: Nonlinear model validation using correlation tests,
International Journal of Control,Vol. 60, no. 6, pp. 1107-1120, 1994.

S.A. Billi ngs, H.B. Jamaluddin, S. Chen: Properties of neural networks with
applications to modelli ng non-linear dynamical systems, International Journal
of Control,Vol. 55, no. 1, pp. 193-224, 1992.

