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This note contains important information on how the present toolbox is to be installed and the
conditions under which it may be used. Please read it carefully before use.

The note should be sufficient for being able to make the essential portion of the toolbox functions
work properly. However, to enhance performance a number of functions have been rewritten in C
and in order to compile these, it is necessary to read the information about CMEX files found in the
Matlab External Interface Guide as well as to have some familiarity with compili ng C programs.

NEW IN VERSION 1.1
A few bugs have been fixed and the following six functions have been included in the new version

igls: Iterated generalized least squares training of multi-output networks
nnarxm: Identify a multi-output neural network ARX (or AR) model.
nnigls: Iterated generalized LS training of multi-output NNARX models
kpredict: k-step ahead prediction of the network output.
nnloo: Leave-One-Out estimate of generalization error for NNARX models
xcorrel: High-order cross-correlation functions.

In addition to this the toolbox has also been ported to MATLAB 5.

INSTALL ING THE TOOLBOX

° The toolbox is provided in two versions. One for MATLAB 4.2 an one for MATLAB
5. Both versions have been tested under UNIX on a HP9000/735 and MATLAB 4.2c.1
for WINDOWS 3.1/95 on an IBM compatible PENTIUM.



° Due to a bug in the “fprintf” function in MATLAB 4.2 for MS-Windows, many of the
functions will generate a very inconvenient output in the MATLAB command window.
If this is to be avoided, replace “\r” in the line:

fprintf(‘iteration # %i   PI = %4.3\r’,iteration-1,PI);

with “\n” in the m-files batbp, incbp, marq, marq2, marqlm, nnarmax1, nnarmax2,
nniol, nnoe, nnssif, nnrarmx1, mmrarmx2, rpe. (it is always close to line 10 from the
bottom). The problems should have been corrected in version 5.  On UNIX systems
there should not be any such problems (it is also thought that the toolbox can be used
on Macintosh computers).

° The signal processing toolbox is required by the validation functions (nneval, nnvalid,
ifvalid) to compute the correlation functions. Otherwise no additional toolboxes should
be necessary.

° All toolbox functions are implemented as plain m-files, but to enhance performance
CMEX duplicates have been written for some of the most important functions. In the
MATLAB 4.2 version the Makefile contains the commands necessary for compili ng the
C-routines. If one is running MATLAB under HP-UX, it should be possible simply to
write
>> !make
in the MATLAB command window to invoke the compiler. If one is working on
another platform it will be necessary to modify the Makefile accordingly. It is strongly
recommended that the compilation be optimized with respect to execution speed as
much as the compiler permits. Under MATLAB 5 it might be necessary to copy the file
mexopts.sh to the working directory and modify it appropriately (ANSI C + max.
optimization. To compile the MEX files under MATLAB 5 just type
>> makemex
in the MATLAB command window.

USING THE TOOLBOX

° The checks for incorrect functions calls are not very thorough and consequently
MATLAB will often respond with quite incomprehensible error messages when a
function is passed the wrong arguments. When calli ng a CMEX-function, it may even
cause MATLAB to crash. Hence, when using the CMEX functions it may be a good
idea to make extra copies of the m-files they are replacing (do not just rename the m-
files since they are still read by the “help” command). One can then start by calli ng the
m-functions first to make sure the call is correct.

° The functions have been optimized with respect to speed rather than memory usage.
For large network architectures and/or large data sets, memory problems may thus



occur. If one is running the student edition of MATLAB one will almost certainly run
into problems due to the rather small maximum size of the matrices allowed.

CONDITIONS/ DISCLAIMER
By using the toolbox the user agrees to all of the following.

° If one is going to publish any work where this toolbox has been used, please remember
it was obtained free of charge and include a reference to this technical report (M.
Nørgaard:”Neural Network Based System Identification Toolbox,” Tech. Report. 97-
E-851, Department of Automation, Technical University of Denmark, 1997).

° Magnus Nørgaard and Department of Automation do not offer any support for this
product whatsoever. The toolbox is offered free of charge - take it or leave it!

° The toolbox is copyrighted freeware by Magnus Nørgaard/Department of Automation,
DTU. It may be distributed freely unmodified. It is, however, not permitted to utili ze
any part of the software in commercial products without prior written consent of
Magnus Norgaard, The Department of Automation, DTU.

° THE TOOLBOX IS PROVIDED “AS-IS” WITHOUT WARRENTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRENTIES OR CONDITIONS OF MECHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MAGNUS
NØRGAARD AND/OR THE DEPARTMENT OF AUTOMATION BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES OF ANY KIND, OR DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA, OR PROFITS, WHETHER OR NOT MN/IAU HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND/OR ON ANY
THEORY OF LIABILITY ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

MATLAB is a trademark of The MathWorks, Inc.
Borland C++ is a trademark of Borland International.
MS-Windows is a trademark of Microsoft Coporation.

Trademarks of other companies and/or organizations mentioned in this documentation appear for
identification purposes only and are the property of their respective companies and/or organizations.
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1 Tutor ial
The present toolbox: “Neural Network Based System Identification Toolbox” , contains a large
number of functions for training and evaluation of multilayer perceptron type neural networks. The
main focus is on the use of neural networks as a generic model structure for the identification of
nonlinear dynamic systems. The System Identification Toolbox provided by The MathWorks, Inc.,
has thus been a major source of inspiration in constructing this toolbox, but the functions work
completely independent of the System Identification Toolbox as well as of the Neural Network
Toolbox (also provoded by the MathWorks, Inc.). Although the use in system identification will be
emphasized below, the tools made available here can also be used for time-series analysis or simply
for training and evaluation of ordinary feed-forward networks (for example for curve fitting).

This chapter starts by giving a brief introduction to multilayer perceptron networks and how they
may be trained. The rest of the tutorial will then address the nonlinear system identification problem,
and a number of functions supporting this application are described. A small demonstration example,
giving an idea of how the toolbox is used in practice concludes the chapter. A reference guide which
details the use of the different functions is given in chapter 2.

It should be emphasized that this is not a text book on how to use neural networks for system
identification. A good understanding of system identification (see for example Ljung, 1987) and of
neural networks (see Hertz et al., 1991 or Haykin, 1993), are important requirements for
understanding this tutorial. The manual could have been written in more textbook like fashion, but it
is the author’s conviction that it is better to leave elementary issues out to motivate the reader to
obtain the necessary insight into identification and neural network theory before using the toolbox.
Understanding is the best way to avoid that working with neural networks becomes a “fiddlers
paradise”!
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1 The Multilayer Perceptron
The Multilayer Perceptron (or MLP) network is probably the most often considered member of the
neural network family. The main reason for this is its abili ty to model simple as well as very complex
functional relationships. This has been proven through a large number of practical applications (see
Demuth & Beale, 1993).

A fully connected two layer feedforward MLP-network with 3 inputs, 2 hidden units (also called
“nodes” or “neurons”), and 2 outputs units.

The class of MLP-networks considered here is furthermore confined to those having only one hidden
layer and only hyperbolic tangent and linear activation functions (f,F):
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The weights (specified by the vector θ, or alternatively by the matrices w and W) are the adjustable
parameters of the network and they are determined from a set of examples (or realizations) through
the process called training. The examples, or the training data as they are usually called, are a set of
inputs (u(t)) and corresponding desired outputs (y(t)).

Specify the training set by:

[ ]{ }Z u t y t t NN = =( ), ( ) , ,1�
The objective of training is then to determine a mapping from the set of training data to the set of
possible weights:

ZN → �θ
so that the network will produce predictions �( )y t , which in some sense are “close” to the true
outputs y(t).
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The prediction error approach, which is the strategy applied here, is based on the introduction of a
measure of closeness in terms of a mean square error criterion:

V Z
N

y t y t y t y tN
N T

t

N

( , ) ( ( ) �( )) ( ( ) �( ))θ θ θ= − −
=
∑1

2 1

The weights are then found as:

� arg min ( , )θ θ
θ

= V ZN
N

by some kind of iterative minimization scheme:

θ θ µ( ( ) ( ) ( )i i i if+ = +1)

θ( )i  specifies the current iterate (number 'i'), f i( )  is the search direction, and µ ( )i  the step size.

A large number of training algorithms exist, each of which is characterized by the way in which
search direction and step size are selected. The toolbox provides the following algorithms:

General Network Training Algor ithms

batbp

igls

incbp

marq

marqlm

rpe

Batch version of the Back-propagation algorithm.

Iterated generalize Least Squares training of networks with multiple outputs.

Recursive (/incremental) version of Back-propagation.

Basic Levenberg-Marquardt method.

Memory-saving implementation of the Levenberg-Marquardt method.

Recursive prediction error method.

All functions require the following six arguments when called:

NetDef : A “string-matrix” defining the network architecture:
NetDef=[‘HHHHHH’
       ‘LH----’];
specifies that the network has 6 tanh hidden units, 1 linear, and 1 tanh output unit.

w1, w2 : Matrices containing initial weights (typically selected by random).
PHI      : Matrix containing the inputs.
Y: Matrix containing the desired outputs.
trparms: Vector containing different parameters associated with the training. The content of the

vector varies from function to function and is briefly discussed below. More
information is found in the reference guide (chapter 2).

For example the function call
>> [W1,W2,crit_vector,iter]=batbp(NetDef,w1,w2,PHI,Y,trparms)
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will train a network with the well-known back-propagation algorithm. This is a gradient descent
method taking advantage of the special strucure the neural network in the way the computations are
ordered. For batbp the vector trparms contains four elements:

trparms = [1000 1e-4 0.01 0]

This means that the maximum number of iterations is 1000, that the training should stop if the value
of the criterion function VN gets below 10-4, that the step size is 0.01 and that the so-called
momentum term is turned off (see Hertz et al., 1991). The batbp-function will return the trained
weights, (W1,W2), a vector containing the value of VN for each iteration, (crit_vector), and the
number of iterations actually executed, (iter). The algorithm is currently the most popular method for
training networks, and it is described in most text books on neural networks (see for example Hertz
et al. (1991)). This popularity is however not due to its convergence properties, but mainly to the
simplicity with which it can be implemented.

A Gauss-Newton based Levenberg-Marquardt method is the standard method for minimization of
mean-square error criteria, due to its rapid convergence properties and robustness. A version of the
method, decribed in Fletcher (1987), has been implemented in the function marq:

>> [W1,W2,crit_vector,iter,lambda]=marq(NetDef,w1,w2,PHI,Y,trparms)

The difference between this method and the one described in Marquardt (1963) is that the size of the
elements of the diagonal matrix added to the Gauss-Newton Hessian is adjusted according to the size
of the ratio between actual decrease and predicted decrease:

r
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G here denotes the gradient of the criterion with respect to the weights and R is the so-called Gauss-
Newton approximation to the Hessian.

The algorithm is as follows:

1) Create an initial parameter vector θ( )0  and an initial value λ( )0

2)  Determine the search direction from [ ]R I f Gi i i i( ) ( )( ) ( ) ( ) ( )θ λ θ+ = − , I being a unit matrix.

3)  r i i i( ) ( ) ( ). /> ⇒ =0 75 2λ λ  (If predicted decrease is close to actual decrease let the search
direction approach the Gauss-Newton search direction while increasing the step size.)
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4)  r i i i( ) ( ) ( ).< ⇒ =0 25 2λ λ (If predicted decrease is far from the actual decrease let the search
direction approach the gradient direction while decreasing the step size.)

5)  If  V f Z V ZN
i i N

N
i N( , ) ( , )( ) ( ) ( )θ θ+ <  then accept θ θ( ( ) ( )i i if+ = +1)  as a new iterate and

     let λ λ( ( )i i+ =1)  and i= i+1.

6)  If the stopping criterion (i >= maximum no. iterations or V ZN
i N( , )( )θ  < error bound) is not

satisfied go to 2)

The call is essentially the same as for the back-propagation function, but the vector trparms is now
somewhat different. First of all i t contains the additional parameter λ( )0  but the function has
furthermore been implemented so that it can minimize criteria augmented with a regularization term:

W Z
N

y t y t y t y t
N

DN
N T

t

N
T( , ) ( ( ) �( )) ( ( ) �( ))θ θ θ θ θ= − − +

=
∑1

2

1

21

The matrix D is a diagonal matrix, which in its commonly is selected to be D I= α . For a discussion
of regularization by simple weight decay, see for example Larsen & Hansen (1994), Sjöberg & Ljung
(1992).

Choosing trparms = [200 1e-4 1 1e-5]  means that the algorithm will run to a maximum 200
iterations, that the error bound is 10-4, λ( )0 =1, and that D=10-5×I. By calli ng marq with trparms =
[200 1e-4 1 0] , regularization is switched off.  trparms = [200 1e-4 1 1e-5 1e-4]  has the effect that a
weight decay of 10-4 is used for the input-to-hidden layer weights, while 10-5 is used for the hidden-
to-output layer weights. The initial value of λ is not a particularly critical parameter since it is
adjusted adaptively and thus will only influence the initial convergence rate: if it is too large, the
algorithm will take small steps and if it is too small, the algorithm will have to increase it until small
enough steps are taken.

batbp and marq both belong to the class of so-called batch methods (meaning “all-at-once”) and
hence they will occupy a large quantity of memory. An alternative strategy is to repeat a recursive
(or “ incremental” ) algorithm over the training data a number of times. Two functions are available in
the toolbox: incbp and rpe.

The call
>> [W1,W2,PI_vector,iter]=rpe(NetDef,w1,w2,PHI,Y,trparms,method)

trains a network using a recursive Gauss-Newton like method as described in Ljung (1987). Different
updates of the covariance matrix have been implemented:

Exponential forgetting (method=‘ ff’ ):

( )K t P t t I t P t tT( ) ( ) ( ) ( ) ( ) ( )= − + −
−

1 1
1

ψ λ ψ ψ

( )�( ) �( ) ( ) ( ) �( )θ θt t K t y t y t= − + −1
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( )P t P t K t t P tT( ) ( ) ( ) ( ) ( )= − − −1 1ψ λ
Constant-trace (method=‘ct’ ):

( )K t P t t t P t tT( ) ( ) ( ) ( ) ( ) ( )= − + −
−

1 1 1
1

ψ ψ ψ

( )�( ) �( ) ( ) ( ) �( )θ θt t K t y t y t= − + −1

P t P t K t t P tT( ) ( ) ( ) ( ) ( )= − − −1 1ψ

P t
tr P t

P t I( )
( ( ))

( )max min
min=

−
−

α α
α

Exponential forgetting and Resetting Algorithm (method=‘efra’ ):

( )K t P t t t P t tT( ) ( ) ( ) ( ) ( ) ( )= − + −
−

α ψ ψ ψ1 1 1
1

( )�( ) �( ) ( ) ( ) �( )θ θt t K t y t y t= − + −1

P t P t K t t P t I P tT( ) ( ) ( ) ( ) ( ) ( )= − − − + − −
1

1 1 12

λ
ψ β δ

For neural network training, exponential forgetting is typically the method giving the fastest
convergence. However, due to the large number of weights usually present in a neural network, care
should be taken when choosing the forgetting factor since it is diff icult to ensure that all directions of
the weight space will be properly excited. If λ is too small, certain eigenvalues of the covariance
matrix, P, will i ncrease uncontrollably. The constant trace and the EFRA method are constructed so
that they bound the eigenvalues from above as well as from below to prevent covariance blow-up
without loss of the tracking abili ty. Since it would be very time consuming to compute the
eigenvalues of P after each update, the functions does not do this. However, if problems with the
algorithms occur, one can check the size of the eigenvaules by adding the command eig(P) to the end
of the rpe-function before termination.

For the forgetting factor method the user must specify an initial “covariance matrix” P(0). The
common choice for this is P c I( )0 = × , c being a "large" number, say 10 to 104. The two other
methods initialize P(0) as a diagonal matrix with the largest allowable eigenvalue as its diagonal
elements. When using the constant trace method, the user specifies the maximum and the minimum
eigenvalue (αmin, αmax) directly. The EFRA-algorithm requires four different parameters to be
selected. Salgado et al. (1988) give valuable supplementary information on this.

For multivariable nonlinear regression problems it is useful to consider a weighted criterion like the
following:

∑
=

− −Λ−=
N

t

TN
N tytytyty

N
ZV

1

1 ))(ˆ)(())(ˆ)((
2

1
),( θθθ
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As explained previously all the training algorithms have been implemented to minimize the
unweighted criterion (i.e., Λ is always the identity matrix). To minimize the weighted criterion one
will therefore have to scale the observations before training. Factorize ΣΣ=Λ− T1  and scale the
observations as )()( tyty Σ= . If the network now is trained to minimize

∑
=

−−=
N

t

TN
N tytytyty

N
ZV

1

))(ˆ)(())(ˆ)((
2

1
),( θθθ

the network output ( )(ˆ ty  ) must subsequently be rescaled by the operation )(ˆ)(ˆ 1 tyty −Σ= . If the
network has linear output units the scaling can be build into the hidden-to-output layer matrix, W2,
directly: WW 1−Σ= .

Since the weighting matrix is easily factorized by using the MATLAB command sqrtm it is
straightforward to train networks with multiple outputs:

>> [W1,W2,crit_vector,iter,lambda]=marq(NetDef,w1,w2,PHI,sqrtm(inv(Gamma))*Y,trparms);
>> W2=sqrtm(Gamma)*W2;

If the noise on the observations is white and Gassian distributed and the network architecture is
complete, i.e., the architecture is large enough to describe the system underlying the data, the
Maximum Likelihood estimate of the weights is obtained if Λ  is selected as the noise covariance
matrix. The covariance matrix is of course unknown in most cases and often it is therefore estimated.
In the function igls an iterative procedure for network training and estimation of the covariance
matrix has been implemented. The procedure is called Iterative Generalized Least Squares

>> [W1,W2]=marq(NetDef,W1,W2,PHI,Y,trparms);
>> [W1,W2,lambda,Gamma]=igls(NetDef,W1,W2,trparms,repeat,Gamma0,PHI,Y);

The function outputs the scaled weights and thus the network output (or the weights if the output
units are linear) must be rescaled afterwards.
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To summarize advantages and disadvantages of each algorithm, the following table grades the most
important features on a scale from -- (worst) to ++ (best):

Execution time Robustness Call Memory
batbp -- + -- -
incbp -- + -- ++
marq ++ ++ ++ --
marqlm + ++ ++ 0
rpe 0 - -- ++

Apart from the functions mentioned above, the toolbox offers a number of functions for data scaling,
for validation of trained networks and for detemination of optimal network architectures. These
functions will be described in the following section along with their system identification
counterparts. The section describes the real powerful portion of the toolbox, and it is essentially this
portion that seperates this toolbox from most other neural network tools currently available.
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2 System Identification
The procedure which must be executed when attempting to identify a dynamical system consists of
four basic steps:

Figure 2.1 The system identification procedure.

Similarly to the system identification toolbox provided by The MathWorks, Inc., the experimental
phase is not something which will be dealt with here. It is assumed that experimental data describing
the underlying system in its entire operating region has been obtained before hand with a proper
choice of sampling frequency:

[ ]{ }Z u t y t t NN = =( ), ( ) , ,1�
{ }u t( ) is no longer just a set of inputs but it is now a signal, the control signal. Likewise { }y t( )  now

represents the measured output signal. ‘ t’ specifies sampling instant number t. If the system under
consideration has more than one input and/or output, u(t) and y(t) are simply vectors.

2.1 Select Model Structure
Assuming that a data set has been acquired, the next step is to select a model structure.
Unfortunately, this issue is much more difficult in the nonlinear case than in the linear case. Not only
is it necessary to choose a set of regressors but also a network architecture is required. The approach
used here is more or less identical to the one described in Sjöberg et al. (1994). The idea is to select

EXPERIMENT

SELECT

MODEL STRUCTURE

ESTIMATE

MODEL

VALIDATE

MODEL

Accepted

Not Accepted
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the regressors based on inspiration from linear system identification and then determine the best
possible network architecture with the given regressors as inputs.

The toolbox provides six different model structures, five of which are listed below. The sixth will not
be discussed until in the next section since it has a form which is not motivated by equivalence to a
linear model structure.

ϕ(t) is a vector containing the regressors, θ is a vector containg the weights and g is the function
realized by the neural network.

NNARX
Regressor vector:

[ ]ϕ( ) ( ) ( ) ( ) ( )t y t y t n u t n u t n na k b k

T= − − − − − +1 1� �

Predictor:

�( ) �( , ) ( ( ), )y t y t t g tθ θ ϕ θ= − =1

NNOE
Regressor vector:

[ ]ϕ θ θ( ) �( ) �( ) ( ) ( )t y t y t n u t n u t n na k b k

T= − − − − − +1 1� �

Predictor:

�( ) ( ( ), )y t g tθ ϕ θ=

NNARMAX1
Regressor vector:

[ ]
[ ]

ϕ ε ε

ϕ ε ε

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

t y t y t n u t n u t n n t t n

t t t n

a k b k c

T

T
c

T

= − − − − − + − −

= − −

1 1 1

11

� � �
�

where ε( )t  is the prediction error ε θ( ) ( ) �( )t y t y t= −

Predictor:

)()1)(()),(()(ˆ 1
1 tqCtgty εθϕθ −+= −

where C is a polynomial in the backward shift operator C q c q c qn
n( )− − −= + + +1

1
11 �
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NNARMAX2
Regressor vector:

 [ ]ϕ ε ε( ) ( ) ( ) ( ) ( ) ( ) ( )t y t y t n u t n u t n n t t na k b k c

T= − − − − − + − −1 1 1� � �

Predictor:

�( ) ( ( ), )y t g tθ ϕ θ=

NNSSIF (state space innovations form)
Regressor vector:

 [ ]ϕ θ ε θ( ) � ( ) ( ) ( )t x t u t tT T T T
=

Predictor:
( )�( ) ( ),

�( ) ( ) �( )

x t g t

y t C x t

+ =

=

1θ ϕ θ

θ θ θ

To obtain a so-called pseudo-observable form, a set of psudo-observabili ty indices must be specified.
For more detailed information see Chapter 4, Appendix A in Ljung (1987).

Only the NNARX model has a predictor without feedback. The remaining model types all have
feedback through the choice of regressors, which in the neural network terminology means that the
networks become recurrent: future network inputs will depend on present and past network outputs.
This might lead to instabili ty in certain areas of the networks’s operating range and it can be very
difficult to determine whether or not the predictor is stable. The ARMAX1 structure was
constructed to avoid this by using a linear MA-filter for filtering past residuals. The basic rule of
thumb is however to use a NNARX type model whenever possible!

When a particular model structure has been selected, the next choice which has to be made is the
number of past signals used as regressors, i.e., the model order. If no or only very little noise is
present (in which case the nnarx function is always preferred), the toolbox provides a method for
determining the so-called lag space:

>> OrderIndexMat = lipschit(U,Y,nb,na)

(See He & Asada, 1993). The function is not always equally succesful but sometimes reasonable
performance is observed. However, it is always better to have enough physical insight into the
system to be modelled to choose the model order properly.

2.2 Estimate Model
The toolbox contains the following functions for generating models from a specified model structure:
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Nonlinear System Identification

nnarmax1

nnarmax2

nnarx

nnarxm

nnigls

nniol

nnoe

nnssif

nnrarmx1

nnrarmx2

nnrarx

Identify a neural network ARMAX (or ARMA) model (linear noise filter).

Identify a neural network ARMAX (or ARMA) model.

Identify a neural network ARX (or AR) model.

Identify a multi-output neural network ARX (or AR) model.

Iterated generalized least squares training of multi-output NNARX models

Identify a neural network model suited for I-O linearization type control.

Identify a neural network Output Error model.

Identify a neural network state space innovations form model.

Recursive counterpart to NNARMAX1.

Recursive counterpart to NNARMAX2.

Recursive counterpart to NNARX.

The functions use either the Levenberg-Marquardt method or the recursive prediction error method
and consequently they must be passed many of the same parameters as the functions marq or rpe
when called:

>> [W1,W2, NSSEvec,iter,lambda]=nnarx(NetDef,NN,W1,W2,trparms,Y,U)

In order for the function to be able to determine the structure of the regression vector, the additional
argument NN has to be passed (except for nnssif). In, for example, the NNARX case,
NN=[na nb nk] . Except for nnarxm and nnssif none of the functions are able to handle multi-output
systems. If one wishes to build a NNARMAX model of a system with more than one output it is thus
necessary to build a seperate model for each output. However, all functions do handle multi-input
systems, in which case nb and nk are specified as row vectors containing the proper specifications for
each input.

The functions for building models based on recurrent networks furthermore requires the parameter
skip, which is used for reducing transient effects corrupting the training.

>> [W1,W2, NSSEvec,iter,lambda]=nnoe(NetDef,NN,W1,W2,trparms,skip,Y,U)

The function nniol differs from the above mentioned functions in that it does not generate a model
motivated by conventional linear system identification. The idea is to describe the system by:
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g y t y t n u t u t n u t

a b f

a b g

θ θ

θ

= − − − −

+ − − − − −

1 2

1 2 1

� �
� �



System Identification

Neural Network Based System Identification Toolbox User’s Guide 1-13

where f and g are two seperate networks. This type of model is particulaly interesting for control by
so-called input-output linearization. Unless the intention is to use the model for that specific purpose,
it is recommended to avoid this function since it includes two networks instead of just one.

2.3 Validate Model
When a network has been trained, the next step according the procedure, is to evaluate it.

Evaluation of Trained Networks

fpe

ifvalid

ioleval

loo

kpredict

nneval

nnfpe

nnloo

nnsimul

nnvalid

xcorrel

Final Prediction Error estimate of generalization error for feed-forward nets.

Validation of models generated by NNSSIF.

Validation of models generated by NNIOL.

Leave-One-Out estimate of generalization error for feed-forward networks.

k-step ahead prediction of network output.

Validation of feed-forward networks (trained by marq, batbp, incbp, or rpe).

FPE-estimate for I-O models of dynamic systems.

Leave-One-Out estimate of the generalization error for NNARX models

Simulate identifyed model of dynamic system from sequence of controls.

Validation of I-O models of dynamic systems.

High-order cross-correlation functions.

The most common method of validation is to investigate the residuals (prediction errors) by cross-
validation on a test set. The functions nnvalid and ifvalid perform a number of such tests, including
auto-correlation function of the residuals and cross-correlation function between controls and
residuals. These functions are displayed along with a histogram showing the distribution of the
residuals. Moreover, a linear model is extracted from the network at each sampling instant by a so-
called local instantanous linearization technique (see Sørensen, 1994; Nørgaard, 1996). The function
nnvalid, which handles the validation for most of the model types, is called as follows if nnarx was
used for generating the model:

>> [Yhat,NSSE]=nnvalid(‘nnarx’ ,NetDef,NN,W1,W2,y,u)

u and y specify the test set control (=input) and output signals. Yhat is of course the one-step-ahead
predictions produced by the network while NSSE is the criterion evaluated on the test set (this is
also called the test error). With the function xcorrel it is possible to investigate a number of high-
order cross-correlation functions (see Billi ngs et al., 1992)

>> xcorrel(‘nnarx’ ,NetDef,NN,W1,W2,y,u)
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The test error is a very important quantity since it can be viewed as an estimate of the generalization
error. This should not be too large compared to training error, in which case one must suspect that
the network is over-fitting the training data. If a test set is not available the average generalization
error:

{ } { }J E V V E V N
N

N( ) ( � ) , ( �) lim ( �, )M ≡ =
→∞

θ θ θ

can be estimated from the training set alone by Akaike’s final prediction error (FPE) estimate.
Although a test set is available, the FPE estimate might still offer some valuable insights. For the
basic unregularized criterion the estimate reads (see Ljung, 1987):

� ( ) ( �, )J
N d

N d
V ZFPE N

NM = +
−

θ

d denoting the total number of weights in the network. When the regularized criterion is used, the
expression gets somewhat more complex (see Larsen & Hansen, 1994):
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and

[ ]γ θ θ2
1 1= + −tr R R DN( � )( ( � ) )

γ γ1 2≈  specifies the so-called effective number of parameters in the network. It seems as if the
estimate often becomes more reliable in regularized case, which probably has to do with the
regularization having a smoothing effect on the criterion. A more smooth criterion function means
that the assumptions on which the FPE was derived are more likely to be valid. The function nnfpe
computes the FPE estimate for all the input-output models.

>> [FPE,deff]=nnfpe(‘nnarx’ ,NetDef, W1,W2,u,y,NN,trparms);

For models trained with nnarx the leave-one-out cross-validation scheme provides an estimate of the
generalization error which in general will be more accurate than the FPE estimate. The leave-one-out
estimate is defined by
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θt N
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The function is called as follows

>> Eloo =nnloo(NetDef,NN,W1,W2,trparms,u,y)
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If the maximum number of iterations in the trparms vector is 0, an approximation called linear

unlearning is employed to avoid having to to train N networks. The idea is that �θt  is approximated

from a series expansion around �θ . This leads to the expression
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See Hansen & Larsen (1995) for a derivation. If the network is trained to minimize the unregularized
criterion, the inverse Hessian is approximated by the recursive approximation (also used by the
function rpe):
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Visual inspection of the plot comparing predictions to actual measurements is probably the most
important validation tool. However, one has to be careful with one-step ahead predictions. Very
often they may look very accurate, even though the estimated model is quite far from what it should
be. This is particularly true when the system is sampled rapidly compared to its (fastest) dynamics.
An additional check which Ljung (1987) has recommended, is to perform a pure simulation of the
model. This can be done using the function nnsimul.

>> Ysim=nnsimul(‘nnarx’ ,NetDef,NN,W1,W2,y,u)

One can also investigate the k-step ahead predictions with the function kpredict

>> Ypred = kpredict('nnarx',NetDef,NN,k,W1,W2,y,u);

For feedforward networks there exist a few functions performing more or less the same tests as the
functions discussed above for models of dynamic systems. The function nneval is used for
investigating the residuals while the functions fpe and loo computes the FPE-estimate and LOO
estimate, respectively.

2.4 The Feedback Paths
The figure ill ustrating the identification procedure shows some feedback paths from validation to the
previous blocks. The feedback from validation to training is due to the criterion having local minima.
Since it is very likely that one ends up in a “bad” local minimum, the network should be trained a
couple of times, starting from different initial weights. Regularization has a tremendous smoothing
effect on the criterion and several of the local minima are hence often removed by this. Local minima
do however remain one of the major problems for nonlinear regressions, and there is no simple way
of avoiding them.
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Another feedback path in figure 2.1 leads back to the model structure selection block. Because of the
way the model structure selection problem has been divided into two seperate subproblems, this can
mean two things, namely: “try another regressor structure” or  “try another network architecture.”
While the regressor structure typically has to be chosen on a trial-and-error basis, it is to some extent
possible to automate the network architecture selection. For this purpose the toolbox provides the
functions listed in the table below:

Determination of Optimal Network Architecture

netstruc

nnprune

obdprune

obsprune

Extract weight matrices from matrix of parameter vectors.

Prune models of dynamic systems with Optimal Brain Surgeon (OBS).

Prune feed-forward networks with Optimal Brain Damage (OBD).

Prune feed-forward networks with Optimal Brain Surgeon (OBS).

The so-called Optimal Brain Surgeon (OBS) is the most important strategy and it is consequently the
only method which has been implemented for models of dynamic systems. The method was originally
proposed by Hassibi & Stork (1993), but Hansen & Pedersen (1994) have later derived a
modification of the method so that it can handle networks trained according to the regularized
criterion.

Hansen & Pedersen (1994) define a saliency as the estimated increase of the unregularized criterion
when a weight is eliminated. Because of this definition, a new expression for the saliences is
obtained. The saliency for weight ‘ j’ is defined by:
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j j
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2
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where θ*  specifies the minimum and H( )*θ  the Gauss-Newton Hessian of the regularized criterion:
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ej is the jth unit vector and λj is the Lagrange multiplier, which is determined by:
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The constrained minimum (the minimum when weight ‘ j’ is 0) is then found from

δθ θ θ λ θ= − = − −* *( )j jH e1

Notice that for the unregularized criterion, where R H( ) ( )* *θ θ= , the above algorithm will
degenerate to scheme of Hassibi & Stork (1993).

The problem with the basic OBS-scheme is that it does not take into account that it should not be
possible to have networks where a hidden unit has lost all the weights leading to it, while there still
are weights connecting it to the output layer, or vice versa. For this reason the implementation in this
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toolbox goes one step further. In the beginning the saliences are calculated and the weights are
pruned as described above. But when a situation occurs where a unit has only one weight leading to
it or one weight leading from it, the saliency for removing the entire unit is calculated instead. This
gives rise to some minor extensions to the algorithm (the saliency for the unit is calculated by setting
all weights connected to the unit to 0. Although this is not the optimal strategy it appears to be
working alright in practice. See also (Pedersen et al., 1995)):

Define J as the set of indices to the weights leading to and from the unit in question. Furthermore, let
EJ be a matrix of unit vectors corresponding to each element of the set J. In order to calculate the
saliency for the entire unit, the above expressions are then be modified to:
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1

When a weight (or unit) has been removed, it is necessary to obtain the new inverse Hessian before
proceeding to eliminate new weights. If the network has been retrained it is of course necessary to
construct and invert the Hessian once more. If, however, the network is not retrained, a simple trick
from inversion of partitioned matrices can be used for approximating the inverse Hessian of the
reduced network (Pedersen et al., 1995).

Assume that the pruned weight(s) is(are) located at the end of the parameter vector, θ. The Hessian
is then partioned as follows:
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�H  is the 'new' Hessian, which is to be inverted. Partitioning the inverse Hessian in the same way
yields
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The new inverse Hessian is then determined as the Schur Complement of �P:
~ ~
H P p p pJ JJ J

T− −= −1 1

It is diff icult to decide how often the network should be retrained during the pruning session. Svarer
et al. (1993) suggest a scheme for retraining each time 5% of the weights have been eliminated. The
safest, but also the most time consuming strategy, is of course to retrain the network each time a
weight has been eliminated.

If a model has been generated by nnarx, the OBS function is called as:
>> [ thd,tr_error,FPE,te_error,d_eff,pvec] = ...

nnprune(‘nnarx’ ,NetDef,W1,W2,U,Y,NN,trparms,prparms,U2,Y2);



System Identification

1-18

prparms specifies how often the network is retrained. If one wants to run a maximum of 50
iterations each time 5% of the weights has been eliminated, set prparms to prparms=[50 5] .

thd is a matrix containing the parameter vectors θ after each weight elimination. The last column of
thd contains the weights for the initial network. The next-to-last column contains the weights for the
network appearing after eliminating one weight, and so forth. To extract the weight matrices from
thd, the function netstuc has been implemented. If for example the network containing 25 weights is
the optimal, the weights are retrieved by:

>> [W1,W2] = netstruc(NetDef,thd,25);

2.5 Time-series Analysis
Almost all functions for supporting the system identification process have been written so that they
can handle time-series as well. Check the reference in chapter 2 or the online help facili ty on how this
is can be accomplished.

2.6 Important Issues

• The criterion function will typically have a number of local minima and there is no way to
determine whether a given minimum is global or not. Although regularization has a smoothing
effect on the criterion and often will remove a number of the minima, it is still recommended to
always train the network a couple of times assuming different initial weights.

 

• It has been shown that by stopping the training process before a minimum has been reached, an
effect similar to that of regularization is obtained (Sjöberg & Ljung, 1992). If the network
architecture is selected larger than necessary, it is therefore advantagous to use “early stopping.”
One may find this strategy appealing, when the alternative is a tedious process of finding the
optimal weight decay and/or prune the network. However, one should be aware that when using
early stopping, the FPE and LOO estimates of the generalization error will not work reliably since
the expressions were derived under the assumption that the network is trained to a minimum. An
important validation tool is thereby lost. Also the pruning algorithms assume that the network has
been trained to a minimum. It this is not the case, it is definitely not recommended to prune the
network either. In this context it is also important to note that in practice it is very difficult to
reach a minimum with a recursive algorithm. It is thus recommended to use batch algorithms
whenever possible.

 

• Not all m-functions have been written in equally vectorized code. For example, it is not possible
to implement recursive training algorithms and training algorithms for model structures based on
recurrent networks in quite as “MATLAB-efficient” code as for batch algorithms to train plain
feed-forward networks. Whereas no significant increase in speed is obtained by porting the
functions batbp, marq (,and nnarx) to C, a serious performance improvement results if the
recursive algorithms and the algorithms for training models based on recurrent networks are
written in C. So far four CMEX-programs have been implemented: marq.c, nnarmax2.c, nnoe.c,
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nnssif.c. The Makefile accompanying the toolbox should be read on how to compile the source
files.

 

• Many functions require a lot of memory since the code has been optimized with respect to
execution speed rather than memory usage.

 

• One should be careful not to choose the forgetting factor too small when training networks by the
recursive pediction error method. A small forgetting factor results in very rapid covariance blow-
up.

 

• When the predictor contains feedback, stabili ty problems may occur during training as well as
afterwards, when the network is used. One should thus be very careful with models based on
recurrent networks.

 

• Initialization of recurrent networks. The nnoe, nnarmax1 and nnarmax2 functions try to initialize
the weights to make a stable initial model. Although it is not always a problem that the initial
model is unstable, the instabili ty will often result in severe numerical problems. When pruning
recurrent networks unstable networks often occur during the process.

 

• It might be that there are certain features in the training data which one is not interested in
capturing with the model. This could be regular outliars, but it could also be some undesired
physical effects. Consequently one is sometimes interested in removing certain points and time-
intervals from the training set. Unfortunately this is not possible unless the predictor has no
feedback (as in NNARX models), since removal of data points otherwise will give rise to
transients.
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3 Example
A simple demonstration example giving a walk through of several of the toolbox functions is
presented below. The subject of the example investigation is a set of data obtained by simulation of
an open loop stable, nonlinear, continuous system. The data set can be found along with the toolbox
functions in a file called spmdata.mat. Since the data has been generated by simulation, it is known
that it is possible to describe it by a nonlinear output error model. In general, information like this is
clearly not available, and hence it will i n practice be necessary to test a number of different model
structures before picking the best one. The working procedure is typically the same that outlined
below.

Many of the functions produce several plots, but some of these are sacrificed in the example in order
to give the reader a clear overview. If the reader wants to run the example himself, he should be
aware that the results need not be exactly as shown since they depends heavily on the initial weights
chosen by random in the function nnoe.

Load data obtained by experiment
The data is found in the file spmdata.mat, which is found along with all the toolbox functions. Load
the file and use the whos command to view the contents:
>> load spmdata
>> whos
              Name        Size       Elements     Bytes    Density   Complex

                u1       1 by 500         500      4000       Full      No
                u2       1 by 500         500      4000       Full      No
                y1       1 by 500         500      4000       Full      No
                y2       1 by 500         500      4000       Full      No

Grand total is 2000 elements using 16000 bytes

u1 and y1 will be used for training, while u2 and y2 will be used for validation purposes only.

Display the training data in a MATLAB figure by typing the following sequence of commands:
>> subplot(211), plot(u1)
>> title(‘I nput sequence’)
>> subplot(212), plot(y1)
>> title(‘Output sequence’)
>> subplot(111)
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First the training set is scaled to zero mean and variance one and then the test set is scaled with the
same constants:

>> [u1s,uscales] = dscale(u1);
>> [y1s,yscales] = dscale(y1);
>> u2s = (u2-uscales(1))/uscales(2);
>> y2s = (y2-yscales(1))/yscales(2);

Determine regressors
The function lipschit is employed to determine the order of the system. For example, the indices for
system orders from 1 to 5 are investigated (here one has to have patience: even on a HP9000/735
workstation this takes some time!):

>> OrderIndices = lipschit(u1s,y1s,1:5,1:5);
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It is diff icult to conclude anything certain from this plot, which probably has to do with the noise
corrupting the measurements. It is however not unreasonable to assume that the system can be
modeled by a second order model since the slope of the curve is decreases for model orders >= 2.

Fit a L inear Model
The golden rule in identification (and in most other matters) is to try simple things first. If a linear
model does a decent job, one should not bother wasting time on fancy neural network based model
structures. To identify a linear OE-model, the System Identification Toolbox from The MathWorks,
Inc. (Ljung, 1991) is employed:
>> th = oe([y1’ u1’ ] ,[2 2 1] );
>> present(th);
This matrix was created by the command OE     on 8/17 1995 at 11:9
Loss fcn: 0.2814   Akaikè s FPE: 0.2859 Sampling interval 1
The polynomial coefficients and their standard deviations are

B =

         0    0.0153    0.0275
         0    0.0055    0.0076

F =

    1.0000   -1.5135    0.6811
         0    0.0286    0.0209

The function compare is called to compare measurements and predictions:
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>> figure(1), compare([y2’ u2’ ] ,th,1);
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Output # 1 Fit: 0.5266

The prediction is the smooth curve while the more noisy one represents the measurements.

One of the most common ways of validating an estimated linear model, is to display the auto
correlation function of the residuals and the cross correlation function between input and residuals.
This can be done with the function resid:

>> figure(2), resid([y2’ u2’ ] ,th);
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From the comparison plot as well as from the correlation functions it clearly appears that the linear
model has severe problems, especially for large magnitudes. It is thus concluded that this is due to
the underlying system being nonlinear.

Choose a Nonlinear Model Structure
for comparison a NNOE model structure is attempted. Initially a fully connected network
architecture with 10 hidden hyperbolic tangent units is selected:

u(t−1)

u(t−2)

y(t−1)

y(t−2)

y(t)

^

^

^

Define the model structure: second order model and 10 tanh units in hidden layer:
>> NetDef = [ ‘HHHHHHHHHH’;‘L---------’ ] ;
>> NN = [2 2 1] ;

The network now has to be trained. Let the function initialize the weights, try max. 300 iterations
and use a small weight decay. Choose the argument skip to 10 to reduce the influence of the
unknown initial conditions:
>> trparms = [300 0 1 1e-3] ; % 300 iterations, use weight decay
>> [W1,W2,NSSEvec]=nnoe(NetDef,NN,[] ,[] ,trparms,10,y1s,u1s);

Validation of  trained network
The function nnvalid is called to validate the generated NNOE-model. First the validation is
performed on the training set (only the comparison plot is shown here):
>> [w1,w2] = wrescale(W1,W2,uscales,yscales,NN);         % Rescale the weights
>> [yhat,NSSE] = nnvalid(‘nnoe’ ,NetDef,NN,w1,w2,y1,u1);
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This looks quite satisfactory, and it is definitely better than the linear model. However, it is never a
problem to fit the training data accurately. Redoing the validation on the test set clearly gives a less
flattering result:
>> [yhat,NSSE] = nnvalid(‘nnoe’ ,NetDef,NN,w1,w2,y2,u2);
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>> figure(2)
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Both plots more than just indicate that not everything is as it perherps could be. By comparing the
plots for training and test set, it is quite obvious that the network is overfitting the data. It is
concluded therefore that the model structure selected contains too many weights.

Improve Performance by Pruning
In order to remove the superfluous weights from the network, the function nnprune is called. This
function determines the optimal network architecture by pruning the network according to the
Optimal Brain Surgeon strategy.

Run the function so that the network is retrained after each weight elimination (this is the slowest but
safest strategy). Do a maximum of 50 iterations when retraining the network. Pass the test data to
the function so that the test error later can be used for pointing out the optimal network. The test
error is the most reliable estimate of the generalization error and it is thus reasonable to select the
network with the smallest test error as final one. The pruning function is called by using the
commands:
>> prparms = [50 0] ;
>> [ thd,trv,fpev,tev,deff,pv] = ...
                      nnprune(‘nnoe’ ,NetDef,W1,W2,u1s,y1s,NN,trparms,prparms,u2s,y2s,10);
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The above plot, which is produced by the nnprune function, should be read from right to left. The
plot displays training error, test error, and FPE estimate of the generalization error of each of the
intermidiate networks. To determine where the test error reaches its minimum, it is necessary choose
a new scale for the y-axis to magnify the interesting area:
>> figure(1), set(gca,’Ylim’ ,[0 0.25] );
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This plot clearly reveals that the minimum of the test error occurs when there are only 25 weights
left in the network. This could also have determined by using the commands:
>> [mintev,index] = min(tev(pv));
>> index=pv(index)
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The outcome of the pruning session may seem somewhat peculiar. Ideally one would expect the
training error to increase monotonically as the weights are pruned, while FPE estimate and test error
should decrease until a certain minimum, and the start increasing as well. However, it is not
uncommon that the results look this strange, particularly when the network is recurrent. Also the
results depend heavily on from which local minimum one starts out.

The optimal network weights are extracted from the matrix thd by using the function netstruc, which
also displays the network:
>> [W1,W2] = netstruc(NetDef,thd,index);

1

2

3

4

Experience has shown that regularization is helpful when pruning neural networks. However, when
the optimal network architecture is found, the network should be retrained without weight decay.
This is done by issuing the commands:
>> trparms = [50 0 1 0] ;
>> [W1,W2,NSSEvec]=nnoe(NetDef,NN,W1,W2,trparms,10,y1s,u1s);

Validation of the Final Network
Start by rescaling the weights so that the validation can be performed on unscaled data (this is just to
being able to see the differences to analysis of the estimated linear model):
>> [w1,w2] = wrescale(W1,W2,uscales,yscales,NN);

Notice (for example by calli ng drawnet) that the biases eliminated during pruning have been
reintroduced by the rescaling function.

Validate the final model:
>> [yhat,NSSE] = nnvalid(‘nnoe’ ,NetDef,NN,w1,w2,y2,u2);

The correlation functions almost stay within thier standard deviations now and thus look far better
than those shown previously:
>> figure(2)
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The predictions are also much closer to the measured output (see the first subplot in figure(1)
produced by nnvalid or issue the following sequence of commands):
>> plot(y1(3:500)), hold on
>> plot(yhat,’m--’) , hold off
>> title(‘Output (solid) and one-step ahead prediction (dashed)’)
>> xlabel(‘ time (samples)’)
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