2 Reference

This chapter contains a detailed description of al the functions in the Neural Network Based
System Identification Toolbox. The information given here is more or lessidenticd to that
obtained from the online help fadlity.

General Network Training Algorithms
batbp Batch version of the badk-propagation algorithm.
igls Iterated generalized least squares training of multi-output networks
incbp Reaursive (/incremental) version of badk-propagation.
marq Levenberg-Marquardt method.
margim Memory-saving implementation of the Levenberg-Marquardt method.
rpe Reaursive prediction error (~GaussNewton) method.

Data M anipulation

dscde Scde datato zero mean and variance 1.

Neural Network Based System I dentification Toolbox User’s Guide 2-1

Nonlinear System |dentification

li pschit Determine the lag space
nnarmax1 | dentify a neural network ARMAX (or ARMA) model (linea MA-filter).
nnarmax2 | dentify a neural network ARMAX (or ARMA) model.
nnarx | dentify a neural network ARX (or AR) model.
nnarxm | dentify a multi-output neural network ARX (or AR) model.
nnigls Iterated generalized LS training of multi-output NNARX models
nniol | dentify a neural network model suited for I-O lineaizaion type control.
nnoe | dentify a neural network Output Error model.
nnssf | dentify a neural network state spaceinnovations form model.
nnrarmx1 Reaursive munterpart to NNARMAX 1.
nnrarmx2 Reaursive munterpart to NNARMAX2.
nnrarx Reaursive munterpart to NNARX.

Deter mination of Optimal Network Architecture
netstruc Extrad weight matrices from metrix of parameter vedors.
nnprune Prune models of dynamic systems with Optimal Brain Surgeon (OBYS).
obdprune Prune feed-forward networks with Optimal Brain Damage (OBD).
obsprune Prune feed-forward networks with Optimal Brain Surgeon (OBS).

Evaluation of Trained Networks

fpe Final Prediction Error estimate of generalization error for feed-forward nets.
ifvalid Validation of models generated by NNSSF.
ioleval Validation of models generated by NNIOL.
kpredict k-step ahead prediction of network output.
loo Leave-One-Out estimate of generadizaion error for feed-forward networks.
nneval Validation of feed-forward networks (trained by marq, batbp, incbp, or rpe).
nnfpe FPE-estimate for 1-O models of dynamic systems.
nnloo Leave-One-Out estimate of generaizaion error for NNARX models
nnsimul Simulate model of dynamic system.
nnvalid Validation of 1-O models of dynamic systems.
wrescde Rescde weights of atrained network.
xcorrel High order crosscorrelation functions.

Miscellanous Utilities
drawnet Draws atwo-layer feed-forward network.
getgrad Derivative of network outputs w.r.t. the weights.
pmntanh Fast tanh-function

Neural Network Based System I dentification Toolbox User’s Guide

2-4

Demonstration Programs

Demonstrates different training methods on a airve fitting example.
Demonstrates the NNARX function.

Demonstrates the NNARMAX2 function.

Demonstrates the NNSSF function.

Demonstrates the NNOE function.

Demonstrates the dfed of regularizaion by smple weight decgy.
Demonstrates pruning by OBS on the sunspot benchmark problem.

batbp

batbp

Purpose
Batch version of the badk-propagation algorithm.

Synopsis
[WLW2,critvegiter] =batbp(NetDef, W1,W2,PHI,Y,trparms)

[nput
NetDef: Network definition.
W1 Input-to-hidden layer weights. The matrix dimension is
[(# of hidden units) * (inputs+ 1)] (the 1 isdue to the bias)
wW2: Hidden-to-output layer weights. The matrix dimension is
[(outputs) * (# of hidden units + 1)]
PHI: Input data [(# of inputs) * (# of data)]
Y: Output data [(outputs) * (# of datd)]
trparms. Vedor containing parameters asociated with the training
trparms = [max_iter eta dpha)
max_iter: Max. number of iterations.
stop_crit: Stop leaning if the aiterion is below this value.
eta Step size
alpha Momentum. Default is O (=off).

Output

W1, W2: Weight matrices when the training is completed.
critvec Vedor containing the aiterion of fit after ead iteration.

iter: # of iterations.

Description
Given a set of corresponding input-output pairs and an initial network
[W1,W2,critveciter] = batbp(NetDef, W1,W2,PHI,Y trparms) trains the

network with badk-propagation.

The adivation functions must be ather linear or tanh The network
architedure is defined by the matrix 'NetDef' consisting of two rows. The first
row spedfies the hidden layer while the second spedfies the output layer.

E.g. NetDef= [LHHHH'
'LL---]

(L =Linea, H =tanh)

Neural Network Based System I dentification Toolbox User’s Guide 2-5

batbp

Noticethat the biasisincluded as the last column in the weight matrices!

Example

Generate data & snusoidal+noise

>> PHI = 2*pi*rand(1,300);

>> Y= dgn(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y, +");

Initialize Network. 5 tanh hidden units, 1 linear output.

>> W1 = rand5,2);

>> W2 = rand1,6);

>> NetDef = ["HHHHH’;" L----];

>> drawnet(W1,W2,eps)

>> trparms= [1000 002 01 Q;

>> [WLW2,critveciter] =batbp(NetDef, W1,W2,PHI,Y,trparms);

Plot the value of the aiterion as a function of the iteration number
>> semil ogy(critveq; grid;

>> xlabel(‘l teration’);

>> ylabel(‘ Criterion’)

Algorithm

Bad-propagation is a gradient descent algorithm where the cmputations are
ordered in a simple fashion by taking advantage of the speaa architedure of a
neural network. In thisimplementation the step sizeis fixed.

See Also

INCBP for the reaursive/incremental version.
NNEVAL for validation of the trained network.
MARQ, RPE, FPE, LOO, OBDPRUNE, OBSPFRUNE.

References

J. Hertz, A. Krogh & R.G. Pamer: “Introduction to the theory of Neural
Computation,” Addison-Wesley, 1991

drawnet

drawnet
Pur pose
Draws atwo layer neural network.
Synopsis
drawnet(W1,W2,CancdVal,instring,outstring)
Input
W1 Input-to-hidden layer weights. The matrix dimension is
[(# of hidden units) * (inputs+ 1)] (the 1 isdue to the bias)
w2 Hidden-to-output layer weights. The matrix dimension is
[(outputs) * (# of hidden units + 1)]
CancdVal: Draw only weights/biases excealing this value.
instring: (OPTIONAL). A “string matrix” with as many rows as there ae
inputs If it is present it labels the network inputs. Otherwise the
inputs are numbered.
outstring: (OPTIONAL and only used if instr exists). “String matrix” with as
many rows as there ae outputs. If it is present it labels the
network outputs.
Description
Draws the network spedfied by the weights in W1 and W2. Positive weights
are represented by a solid line while adashed line represents a negative weight.
Only weights and biases larger than ‘CancdVa' are drawn. A bias is
represented by a verticd line through the neuron.
Example
Initialize Network. 5 tanh hidden units and 1 linear output
>> WL = rand5,3);
>> W2 = rand1,6);
>> drl=[" x1; x2; x253]; %The spaces make each row of equdly long
>> dr2="y
>> drawnet(W1,W2,eps,strl,str2)
See Also
OBDPRUNE, OBSPRUNE, NNPRUNE.
Reference

This function is a modified version of afunction originally provided by Claus
Svarer, Copenhagen University Hospital.

Neural Network Based System I dentification Toolbox User’s Guide 2-7

drawnet

dscale

Purpose
Scde datato zero mean and variance 1 before training

Synopsis
[X,Xscale] =dscale(X)

nput
X: Datamatrix (dimension is# of data vedorsin matrix * # of data points).

Output

X: Scded data matrix
Xscde: Matrix containing sample mean (column 1) and standard deviation
(column 2) for eat datavedor in X.

See Also
WRESCALE on how to rescde the weights of the trained network.

Refer ences

Y. Le Cun, |I. Kanter, SA. Solla: “Eigenvalues of Covariance Matrices:
Application to Neural-Network Learning,” Physicd Review Letters, Vol 66,
No. 18, pp. 23962399 1991

fpe

fpe

Pur pose
Final prediction error (FPE) estimate of the avarage generalization error.

Synopsis
[FPE,deff,varest,H] = fpe(NetDef, W1,W2,PHI,Y,trparms)

Input
Seefor example the function MARQ.

Output

FPE: The Fina prediction error estimate.
deff: The dfedive number of weights.
varest: Estimate of the noise variance

H: The GaussNewton Hessan.

Description

[FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) cdculates Akake's
fina prediction error estimate of the arerage generalizaion error. The function
returns the final prediction error estimate (FPE), the dfedive number of
weights in the network if the network has been trained with weight decay, an
estimate of the noise variance, and the GaussNewton Hesgdan. It is important
that the network has been trained to the minimum of the aiterion before this
functionis cdled.

See Also

LOO for the Leare-One-Out estimate.
NNFPE gives the FPE estimate for models of dynamic systems.

References

J. Larsen & L.K. Hansen: “ Generali zation Performance of Regularized Neural
Network Models," Proc. of the IEEE Workshop on Neura networks for Signal
Proc. IV, Piscaaway, New Jersey, pp.42-51, 1994

L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987

Neural Network Based System I dentification Toolbox User’s Guide 2-9

getgrad

getgrad

Pur pose
Derivative of network output w.r.t. the weights.

Synopsis
[PS,E] = getgrad(method NetDef, NN,W1,W2,Chat,Y,U)

Inputs

SeeNNVALID.
For time series, U is either left out or passed asal].

Output

PS: Matrix containing the derivative of the output w.r.t. ead weight for
ead input-output pair in the data set. The dimension is
[# of weights * # of data]

E: Prediction errors.

Description

Produces a matrix of derivatives of the network output w.r.t. ead network
weight for use in the functions NNPRUNE and NNFPE.

Examples

Network generated by nnarx (or nrrarx):
>> [PY,E] = getgrad('nnarx’',NetDef, NN,W1,W2,[] ,Y,U)

Network generated by nnarmaxl1 (or nnrarmx1):
>> [PY,E] = getgrad('nnarmaxl’',NetDef,NN,W1,W2,Chat,Y,U)

Network generated by nnarmax2 (or nnrarmx2):
>> [PY,E] = getgrad('nnarmax2',NetDef, NN,W1,W2,[] ,Y,U)

Network generated by nnoe:
>> [PY,E] = getgrad('nnce’,NetDef, NN,W1,W2,[] ,Y,U)

See Also
NNPRUNE and NNFPE

2-10

ifvalid

ifvalid

Pur pose
Validate state spacemodels.

Synopsis
[Yhat,NSE] = ifvalid(NetDef,nx,W1,W2,0bsidx,Y,U)

Input
Seethe function NNSSF.

Output

Yhat: Prediction of output(s).
NSSE:Normalized sum of squared errors.

Description

Validate aneural network based state spacemodel of a dynamic system. |.e., a
network model trained with the function NNSSF.

The following plots are produced:

- Output(s) together with predicted output(s).

- Prediction error.

- Auto correlation function of prediction error and crosscorrelation between
prediction error(s) and input(s).

- Histogram(s) showing the distribution of the prediction errors.

- Coefficients of extraded linea models.

Example
>> |oad spmdata
>> NetDef = ['HHHH';'LL--1;
>> trparms= [100 0 1 &4];
>> [WL,W2,0bsidxcritvegiter,lambdg =...
nnssf(NetDef,2,[] ,[] ,[] ,trparms,10,y1,ul);
>> [yhat,NSE] =ifvalid(NetDef,2,W1,W2,0bsidx,y2,u2);

See Also
NNSSF, NNVALID, NNEVAL, IOLEVAL

Neural Network Based System I dentification Toolbox User’s Guide 2-11

ifvalid

Igls

Purpose

Iterated Generalized Least Squares training of a neural network with multiple
output.

Synopsis
[W1,W2,lambda Gamma] =igls(NetDef, W1, W2,trparms,repeat, Gamma,PHI,Y)

Input

NetDef, W1, W2, trparms, PHI, Y: Seethe function MARQ.

reped: Reped the IGLS procedure repeat times. If passed as|] it is st to 5.

Gammea: Initial estimate of the mvariance matrix for the noise. If passed as []
it is %t to the identity matrix.

trparms. Vedor containing parameters associated with the training (see
MARQ). Default values (obtained if trparms=[]): trparms=[50 0 1 (

Output

W1, W2, lambda: Seethe function MARQ.

Gamma: The estimated covariance matrix.
Description

A multi-output feedforward network and the noise variance meatrix are
estimated with an iterative relaxation procedure.

It is important to notice that the network returned from this function will
produce predictions of scded outputs (see the Algorithm paragraph). It is
necessary to multiply the output by sgrtm(Gamna) to obtain the unscaed
predictions. If the network has linea output units one can instead scde the
hidden-to-output layer weights: W2= sgrtm(Gamma)* W2.

Example

Generate data a two sinusoidals+noise

>> PHI = 2*pi*rand1,300);

>> Y= [sn(PHI);cos(PHI)] + [0.1*randn(1,300);0.8*randr(1,300)]
>> plot(PHI,Y(L,), +',PHI,Y(2,:),'0);

Train an initial network with 5 tanh hidden units, 2 linear output

>> WL = rand5,2);
>> W2 = rand1,6);

2-12

igls

>> NetDef = ["HHHHH’;” LL---"];

>> drawnet(WL,W2,eps,’ phi’, [‘'y1l';’ y2'])

>> trparms= [100 0 01];

>> [WL,W2] =marq(NetDef, W1,W2,PHI,Y,trparms);

Apply the IGLS procedure 10 times and train 30 iterations in eadt step.
>> trparms(1)=30;

>> [WL,W2,lambda Gamma] =igls(NetDef, W1,W2,trparms, 10, [] ,PHI,Y);
>> W2u=sgrtm(Gamma)* W2,

>> [Yhat,E,NSE] =nneal (NetDef, W1,W2u,PHI,Y);

Algorithm
The implemented IGLS procedure is very smple
for j=1:repeat,
Train the network
Estimate the mvariance matrix
end

The network is trained with the function MARQ acmrding to the aiterion

6,=V,(6,2") = Zi (v - 5e)) AT (vv) - 9ce))

l N T “~ _
=— t,ON _&(t,0
2NZ£(INLE(,0)

and the mvariance matrix is estimated as
N

- 1 A o
AN ==Y g(t,0")e" (t,0)
N2

J

To reduce the anount of computations the network is trained by first scding
the outputs as

y(t) = Zy(t)
where
N=3"%
and subsequently train the network acmrding to
A 1 X, ~ _ ~
6,=Vu(0.2") =55 (510 - 58)) (0 - 5¢6)

t=

If the network has linea output units, W2 should be scaed by W2u =3"W?2.

See Also

MARQ for Levenberg-Marquardt training.
NNARXM for identification of multi-output NNARX models

Neural Network Based System I dentification Toolbox User’s Guide 2-13

ifvalid

NNIGLS for igls estimation of multi-output NNARX models.

References

T.JFog, J. Larsen, L.K. Hansen: Training andEvaluation d Neural Networks
for Multi-Variate Time-Series Processng. Proc. |EEE International
Conference on Neural Networks, Perth, Australia.

2-14

incbp

Incbp

Pur pose
Reaursive (/incremental) version of the badk-propagation algorithm.

Synopsis
[WLW2,critvegiter] =incbp(NetDef, W1,W2,PHI,Y,trparms)

[nput
NetDef: Network definition
W1 Input-to-hidden layer weights. The matrix dimension is
[(# of hidden units) * (inputs+ 1)] (the 1 isdue to the bias)
W2: Hidden-to-output layer weights. The matrix dimension is
[(outputs) * (# of hidden units + 1)]
PHI: Input data [(# of inputs) * (# of data)]
Y: Output data [(outputs) * (# of datd)]
trparms. Vedor containing parameters asociated with the training
trparms = [max_iter stop_crit eta
max_iter : Max. number of iterations
stop_crit : Stop training if the aiterion is below this value
eta: Step size

Output

W1, W2: Waeight matrices after training.
critvec Vedor containing the aiterion evaulated after ead iteration.
iter : # of iterations.

Description
Given a set of corresponding input-output pairs and an initial network INCBP
trains a network with reaursive badk-propagation.
The adivation functions must be ather linear or tanh The network
architedure is defined by the matrix ‘NetDef’ consisting of two rows. The first
row spedfies the hidden layer while the second spedfies the output layer.

E.g. NetDef= [LHHHH'
'LL---]

(L =Linea, H =tanh)

Noticethat the biasisincluded as the last column in the weight matrices!

Neural Network Based System I dentification Toolbox User’s Guide 2-15

incbp

Example

Generate data a snusoidal+noise

>> PHI = 2*pi*rand1,300);

>> Y= dgn(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y, +);

Initialize Network. 5 tanh hidden units, 1 linear output

>> W1 = rand5,2);

>> W2 = rand1,6);

>> NetDef = ["HHHHH’;" L----];

>> drawnet(W1,W2,eps)

>> trparms= [1000 002 Q1];

>> [WLW2,critveciter] =incbp(NetDef, W1,W2,PHI,Y,trparms);

Plot criterion evaluated after eadh iteration
>> semil ogy(critveq; grid;

>> xlabel(‘l teration’);

>> ylabel(‘ Criterion’)

Algorithm

Bad-propagation is a gradient descent algorithm where the cmputations are
ordered in a smple fashion, by taking advantage of the speaal architecure of a
neural network. In thisimplementation the step sizeis fixed.

See Also

BATBP for the batch version.
RPE for areaursive GaussNewton algorithm.
MARQ, NNEVAL.

References

J. Hertz, A. Krogh & R.G. Pamer: “Introduction to the theory of Neural
Computation,” Addison-Wesley, 1991

2-16

ioleval

loleval

Purpose
Validate models generated by NNIOL.

Synopsis
[Yhat, NSE] =ioleval (NetDeff,NetDefg, NN,W1f,W2f,W1g,W2g,Y,U)

Inputs
Seethe function NNIOL for an explanation of the inputs.

Outputs

Y hat: One-step ahead prediction of outpuit.
NSSE: Normalized sum of squared error (SSE/2N).

Description

Evauate aneura network based model on a form well-suited for control by
discrete input-output lineaizaion. l.e.,, a network mode trained with the
function NNIOL.

The following plots are produced:

- Observed output together with predicted output.

- Prediction error.

- Histogram showing the distribution of the prediction errors.

Example

>> |oad spmdata
>> NetDeff = ['"HHHHH';'L----"];
>> NetDefg = ['HHH';'L--'];
>> NN=[22 1;
>> trparms=[3000 1 &3];
>> [WIf,W2f W1g,W2g,critveciter,lambdd =...
nniol (NetDeff,NetDefg,NN,[] ,[] ,[] .[] ,trparms,y1,ul);
>> [yhat,NSE]=ioleval (NetDeff,NetDefg, NN,WL1f,W2f, W1g,W2g,y2,u2);

See Also
NNIOL, NNVALID, NNEVAL, IFVALID

Neural Network Based System I dentification Toolbox User’s Guide 2-17

ioleval

Kpredict

Pur pose
k-step aheal prediction of system output.

Synopsis
Network generated by NNARX (or NNRARX):
Ypred = kpredict('nnarx',NetDef, NN,k,W1,W2,Y,U);

(likewise for networks generated with NNARMAX1+2 and NNOE)

nput
SeeNNVALID

Output
Ypred: Vedor containing the k-step ahead predictions of the outputs.

NB! The function does not work for models generated by NNIOL, NNARXM,
or NNSSF.

Description

Determine the k-step aheal prediction of the output of a dynamic system and
compare it to the observed output. The predictions are determined by feeding
past predictions into the network where observations are not available and by
setting unavailable resduals to zero. Except for NNOE models a predictor
defined in this manner cannot be expeded to be the optimal predictor.

Example

>> |oad spmdata

>> NetDef = ['HHHH’; 'L---1;

>> NN=[22 1;

>> trparms=[1000 1 &-3];

>> [WLW2,critveciter,lambda =nnarx(NetDef,NN,[] ,[] ,trparms,yl,ul);
>> ypred=Kkpredict('nnarx’,NetDef,NN,10,W1,W2,y1,ul);

2-18

li pschit

lipschit

Pur pose
Determine the lag space

Synopsis
[OrderIndexMat] =li pschit(U,Y,m,n)

Inputs

U: Sequenceof inputs (row vedor)

Y: Sequenceof outputs (row vedor)

m: Vedor spedfying the input lag spaces to investigate
n: Vedor spedfying the oupu lag spacesto investigate

Outputs

OrderlndexMat: A matrix containing the order indices for ead combination
of elements in the vedors m and n. The number of rows
corresponds to the number of elements in m, while the
number of columns corresponds to the number of elements
inn.

Description

Given corresponding input and output sequences the function cdculates a
matrix of indices that can be helpful for determining a proper lag space
structure (m and n) before identifying a model of a dynamic system:
y(t) = f(y(t-1),... y(t-n), u(t-1),..., u(t-m))

An insufficient lag spacestructure leads to a large index. While increasing the
lag spacethe index will deaease until a sufficiently large lag spacestructure is
readed. Increasing the lag spacefurther will not change the index significantly.
In other words: look for the kneepoint of the plot, i.e., where the order index
flattens out.

mis a vedor spedfying which input lag spaces to investigate and n is ditto for
the output. If one is only interested in the order index for one particular choice
of lag structure, n and m are spedfied as sdars, and only the order index is
returned. In the more general case, where one or both are vedors, the function
will also produce one or two plots.

Examples
o NNFR model structure expeded:

Neural Network Based System I dentification Toolbox User’s Guide 2-19

li pschit

m=[1:20]; n=0;

o0 Time series:
U=[]; m=0;

0o Ched only n=m:
m=[1:5]; n=m;

Algorithm

The function should be used with some cae. Do not rely on the results if the
data is too corrupted by noise. Physicd insight is by far the best tool for
determination of the lag space

At this point the function works for SISO systems only. Extenson to the
multivariable case should be straightforward, however.

See Also
Use function DSCALE to scde the data.

Reference

X. He & H. Asada: "A New Method for Identifying Orders of Inpu-Output
Models for Nonlinear Dynamic Systems,” Proc. of the American Control
Conf., S.F., Cdlifornia, 1993

2-20

loo

oo
Pur pose
Estimate the average generalizaion error by lease-one-out crossvalidation.
Synopsis
[Eloo,H] = loo(NetDef, W1,W2,PHI,Y,trparms)
nput
NetDef, W1, W2,

PHI, Y, trparms : Seethe function MARQ

If the variable max_iter=0 in trparms, linea unleaning is used for obtaining a
cheg approximation to the LOO estimate. If max_iter>0 the network will be
retrained a maximum of max_iter iterations for ead input-output pair that is
left out.

Output

Eloo. The leave-one-out crossvalidation estimate of the aerage
generdizdion error
H: The GaussNewton Hessan

Description

LOO cdculates an approximation to the leare-one-out estimate of the average
generalizaion error. The function returns the loo-estimate dong with the
GaussNewton Hessan.

Algorithm

When max_iter=0 “linea unleaning” is used to get a quick approximation to
the LOO-estimate. This approximation is much easier to compute than the true
LOGO-estimate, but is in general lessreliable. Typicdly it is comparable to the
FPE-estimate. Seethe reference below for a derivation.

See Also
FPE for Akaike' sfinal prediction error estimate.

Reference

L.K. Hansen and J. Larsen (1999: "Linear Unlearning for CrossValidation,"
submitted for Advancesin Computational Mathematics, 1995

Neural Network Based System I dentification Toolbox User’s Guide 2-21

marq

marq

Pur pose
Train a (possbly pruned) network with the Levenberg-Marquardt method.

Synopsis
[WL,W2,critvegiterationlambda = marq(NetDef, W1,W2,PHI,Y,trparms)
Input
NetDef: Network definition
W1 Input-to-hidden layer weights. The matrix dimension is

[(# of hidden units) * (inputs+ 1)] (the 1 isdue to the bias)
W2: Hidden-to-output layer weights. The matrix dimension is
[(outputs) * (# of hidden units + 1)]
PHI: Input data [(# of inputs) * (# of data)]
Y: Output data [(outputs) * (# of datd)]
trparms. Vedor containing parameters associated with the training.
trparms = [max_iter stop_crit lambda D]

max_iter: max # of iterations.

stop_crit: Stop training if criterion is below this value.

lambda: Initial Levenberg-Marquardt parameter.

D: Row vedor containing the weight decay parameters. If D has
one dement a scdar weight decay will be used. If D has two
elements the first element will be used as weight decgy for the
hidden-to-output layer and while second will be used for the
input-to-hidden layer weights. For individual weight decays, D
must contain as many elements as there ae weights in the
network.

Default values (obtained if trparmsis left out or =[]) : trparms=[500 0 1 (

Output

W1, W2: Weight matrices after training.

critvec Vedor containing the aiterion evaluated after ead iteration.
iteration: # of iterations.

lambda: The final value of lambda. Relevant if retraining is desired.

Description

Given a set of corresponding input-output pairs and an initia network, a two
layer neura network is trained with the Levenberg-Marquardt method. If
desired it is possble to use regularization by weight decay. Also pruned (i.e.,

2-22

marq

not fully conneded) networks can be trained. The adivation functions can be
either linear or tanh The network architedure is defined by matrix 'NetDef'
which has two rows. The first row spedfies the hidden layer while the second
spedfies the output layer.

E.g.. NetDef= [LHHHH'
ILL-__I]
(L =linea, H =tanh)

Noticethat the biasin isincluded as the last column in the weight matrices and
that aweight is pruned (i.e., 0 and not updated) by initidizing it to O.

Example

Generate data & snusiodal +noise

>> PHI = 2*pi*rand(1,300);

>> Y= dgn(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y, +’);

Initialize network. 5 tanh hidden units, 1 linear output

>> W1 = rand5,2);

>> W2 = rand1,6);

>> NetDef = ["HHHHH’;" L----"];

>> drawnet(W1,W2,eps)

>> trparms= [300002 1Q;

>> [WLW2,critveciter,lambda = marq(NetDef, W1,W2,PHI,Y,trparms);

Plot criterion evaluated after ead iteration
>> semilogy(critveq; grid;
>> xlabel(‘l teration’);
>> ylabel(‘ Criterion’)
Algorithm

The dgorithm is a standard GaussNewton based Levenberg-Marquardt
method as described in the references below. The trust region is adjusted in an
indirea fashion by diredly increasing/deaeasing the diagonal added to the
Hesgan acording to the ratio between adual and predicted change in criterion.

See Also
MARQ2, MARQLM, RPE, BATBP, INCBP, NNEVAL.

References

R. Fletcher: * Practical Methods of Optimization,” Wiley, 1987,
K. Madsen: “ Optimering,” (in danish). Hadte 38, IMM, DTU, 1991

Neural Network Based System I dentification Toolbox User’s Guide 2-23

marglm

marglm

Purpose

Implementation of the Levenberg-Marquardt method that uses less memory
than MARQ.

Description
A less memory consuming (but slower) version of the Levenberg-Marquardt
training algorithm implemented in MARQ. The difference in speed occurs
becaise the function is less “vetorized” (which is a MATLAB problem), but
also because some of the cdculations are caried out more than once

2-24

netstruc

netstruc

Pur pose
Extrad weight matrices from parameter vedor.

Synopsis
[WL,W2] =netstruc(NetDef,thd,index

Inputs

NetDef: Architecure definition.

thd: Matrix containing parameter vedors returned by OBDPRUNE,
OBSPRUNE or NNPRUNE.

index: Spedfies the locaion in thd' where the optimal parameter vedor is
located.

Outputs
W1, W2: Weight matrices.

Description

NETSTRUC extrads the weight matrices from the matrix of parameter vedors
produced by the pruning functions OBDPRUNE, OBSPRUNE and
NNPRUNE.

Example

Prune network by OBS
>> [thdtrefpevecteedeff,pved=...
obsprune(NetDef, W1,W2,PHI1,Y1 trparms,[] ,PHI2,Y2)

Find index to minimum FPE
>> [minfpeindeX = min(fpeve¢pveq);
>> index= pvedindex);

Extrad weights from metrix of parameter vedors

>> [WLWZ2] = netstruc(NetDef,thd,index);
>> drawnet(W1,W2,eps)

See Also
OBDPRUNE, OBSPFRUNE, NNPRUNE.

Neural Network Based System I dentification Toolbox User’s Guide 2-25

nnarmaxl

nnar max1l

Pur pose
| dentify a Neural Network ARMAX (or ARMA) model (linea MA-filter).

Synopsis
[WL1,W2,Chat,critveciterationlambdd =...
nnaax1(NetDef, NN,W1,W2,Chat,trparms,skip,Y,U)

Input

u: Input (= control signal) (left out in the nnarma case)
matrix. Dimension: [(inputs) * (# of data)]

Y: Output data. Dimension: [1 * (# of data)]

NN: NN=[nanb rc nk].
na =# of past outputs used for determining the prediction.
nb = # of past inputs.
nc =# of past residuals (= order of C).
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as there
areinputs.
W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W21)= [(# of hidden units) * (na+nb+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as[], they are initialized automaticaly.
Chat: Initial MA-filter estimate (initialized automeaticdly if Chat=[]).
trparms. Contains parameters asociated with the training (seemarq).
if trparms=[] is passed the default trparms=[500 0 1 Q is used.
skip: Don't use the first ‘skip’ samples for training to reduce the
influence from the transient occuring because of the unknown initial
prediction errors and gradient. If skip=[] is passd the default value
skip=0 will be used.

Seethe function MARQ for a more detailed explanation of ‘trparms’.

NB! For time series (NNARMA models) NN=[na nc] only.

Ouput
Seethe function MARQ for an explanation of the returned variables.

2-26

nnarmax1

Description
Determines a nonlinea ARMAX model of a dynamic system by training a two
layer neural network with the Levenberg-Marquardt method. The function can
handle multi-input single-output systems (MI1SO). It is assumed that the noise
can be modeled by filtering the resduals with alinea MA-filter:
9(118) = g(y(t ~1)..... y(t = ny),u(t = ny),....u(t =, —n +1)+C(qe(t)
in which case problems with instabili ty of the predictor are avoided.

Example

>>|oad spmdata
>> NetDef = ['HHHHH';'L----"];
>> NN=[2221;
>> trparms=[1000 1 &-3];
>> [WL,W2,Chat,critveciter,lambdg] = ...
nnarmax1(NetDef,NN,[] ,[] ,[] ,trparms,10,y1,ul);
>> [yhat,NSE]=nnvalid('nnarmax1',NetDef, NN,W1,W2,Chat,y2,u2);

Algorithm

The name NNARMAX has been chosen becaise the regressors equal those of
an ARMAX model.

See Also
NNRARMX1, NNARMAX?2

Reference
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987
J. §6berg, H. Hjamerson, L. Ljung: “ Neural Networksin System
Identification,” Preprints 10th IFAC symposium on SY SID, Copenhagen.
Vol.2, pp. 4971

O. Serensen: “ Neural Networksin Control Applications,” Ph.D. Thesis.
Aalborg University, Department of Control Engineeing, 1994

Neural Network Based System I dentification Toolbox User’s Guide 2-27

nnarmax2

nnar max2

Pur pose
|dentify a Neural Network ARMAX (or ARMA) model.

Synopsis
[WL,W2,critveciterationlambda] =...
nmaax2(NetDef, NN,W1,W2,trparms,skip,Y,U)

Input

u: Input (= control signal) (left out in the nnarma cae)
matrix. Dimension: [(inputs) * (# of data)]

Y: Output data. Dimension: [1 * (# of data)]

NN: NN=[nanb rc nk].
na =# of past outputs used for determining the prediction.
nb = # of past inputs.
nc =# of past residuals (= order of C).
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as there
areinputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W21)= [(# of hidden units) * (na+nbt+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as (], they are initialized automaticaly.

trparms. Contains parameters asociated with the training (seemarq).
if trparms=[] is passed the default trparms=[500 0 1 Q is used.

skip: Don't use the first ‘skip’ samples for training to reduce the influence
from the transient occuring because of the unknown initial prediction
errors and gradient. If skip=[] is passed the default value skip=0 will
be used.

Seethe function MARQ for a more detailed explanation of ‘trparms’.

NB! For time series (NNARMA models) NN=[na nc] only.

Ouput
Seethe function MARQ for an explanation of the returned variables.

Description
Determines anonlinea ARMAX modd:

2-28

nnarmax2

9(t6) = o(y(t =1),...,y(t —n,),ut =n),...,ut = n, —n, +1),e(t =1),...,e(t —n,))
of a dynamic system by training a two layer neura network with the
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (M1SO).

Example

>> |oad spmdata
>> NetDef = ['HHHHH';'L----"];
>> NN=[2221;
>> trparms=[1000 1 &3];
>> [WLW2,critveciter,lambdg] = ...
nnarmax2(NetDef,NN,[] ,[] ,trparms,10,y1,ul);
>> [yhat,NSE] = nnvalid('nnarmax2',NetDef, NN,W1,W2,y2,u2);

Algorithm

The name NNARMAX has been chosen because the regresors equal those of
an ARMAX model.

See Also
NNRARMX2, NNARMAX1

Reference
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987
J. §6berg, H. Hjamerson, L. Ljung: “ Neural Networksin System
Identification,” Preprints 10th IFAC symposium on SY SID, Copenhagen.
Vol.2, pp. 4971

O. Serensen: “ Neural Networksin Control Applications,” Ph.D. Thesis.
Aalborg University, Department of Control Engineeing, 1994

Neural Network Based System I dentification Toolbox User’s Guide 2-29

nnarx

nnarx

Pur pose
|dentify a Neural Network ARX (or AR) model.

Synopsis
[WL,W2,critvegiterationlambda =nnarx(NetDef, NN,W1,W2,trparms,Y,U)
Input
u: Input (= control signal) (left out in the nnar case)
matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]

NN: NN=[nanb rk].
na =# of past outputs used for determining the prediction.
nb = # of past inputs.
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as there
areinputs.
W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W21)= [(# of hidden units) * (na+nbt+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as], they are initialized automaticaly.
trparms. Contains parameters asociated with the training (seemarq).
if trparms=[] is passed the default trparms=[500 0 1 Q is used.

Seethe function MARQ for a more detailed explanation of ‘trparms’.

NB! For time series (NNAR models) NN=na.

Ouput
Seethe function MARQ for an explanation of the returned variables.

Description
Determines anonlinea ARX model:
9(t8) = g(y(t =1),...,y(t —n,),ut =n),...,u(t = n, —n, +1))
of a dynamic system by training a two layer neura network with the

Levenberg-Marquardt method. The function can handle multi-input single-
output systems (M1SO).

2-30

nnarx

Examples

>> |oad spmdata

>> NetDef = ['HHHH’; 'L---1;

>> NN=[22 1;

>> trparms=[3000 1 &3];

>> [WLW2,critveciter,lambda =nnarx(NetDef,NN,[] ,[] ,trparms,yl,ul);
>> [yhat,NSE]=nnvalid('nnarx',NetDef, NN,W1,W2,y2,u2);

Algorithm

The name NNARX has been chosen because the regressors equal those of an
ARX model.

See Also
NNRARX, NNPRUNE.

Reference
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987
J. §6berg, H. Hjamerson, L. Ljung: “ Neural Networksin System
Identification,” Preprints 10th IFAC symposium on SY SID, Copenhagen.
Vol.2, pp. 4971

O. Sarensen: “ Neural Networks in Control Applications,” Ph.D. Thesis,
Aalborg University, Department of Control Engineeing, 1994

Neural Network Based System I dentification Toolbox User’s Guide 2-31

nnarxm

nNar Xxm
Pur pose
| dentify a multi-output Neural Network ARX (or AR) model.
Synopsis
[WL,W2,critveciterationlambda] =...
nnan(NetDef, NN,W1,W2,trparms,Gammma,Y,U)

Input

u: Input (= control signal) (left out in the nnar case)
matrix. Dimension: [(inputs) * (# of data)]

Y: Output data. Dimension: [(outputs) * (# of datd)]

NN: NN=[nal nbl nk1;na2 nb2 nk2;...].
naX = # of past outputs used for determining the prediction.
nbX = # of past inputs.
nkX = time delay (usually 1).

For multi-input systems, nbX and nkX contain as many columns as
there aeinputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W21)= [(# of hidden units) * (nal+nbl+na2+nh2+...+1)]
dim(W2)=[(outputs) * (# of hidden units)]

If they are passed as], they are initialized automaticaly.

Gamma: Inverse weighting matrix (usually the covariance of the noise).

trparms. Contains parameters asociated with the training (see MARQ).
if trparms=[] is passed the default trparms=[500 0 1 Q is used.

Seethe function MARQ for a more detailed explanation of ‘trparms’.

NB! For time series (NNAR models) NN=na.

Ouput

Seethe function MARQ for an explanation of the returned variables.

Description

Determines anonlinea ARX model:
9(t6) = g(y(t =1),...,y(t —n,),ut =n),...,u(t = n, —n, +1))
of a dynamic system with multiple outputs by training a two layer neural

network with the Levenberg-Marquardt method. The function can handle
multi-input multi-output systems (MIMO).

2-32

nnarx

Examples

>> |oad spmdata

>>Y1=[yl;y1*3];

>>Y2=[y2;y2*3];

>> NetDef = ['HHHH’; 'L---1;

>> NN=[22121200;

>> trparms=[1000 1 &3];

>> [WLW2]=nnarxm(NetDef,NN,[] ,[] ,trparms,ey€2),Y1,ul);

>> [yhat,NSE]=nnvalid('nnarxm’,NetDef, NN,W1,W2,ey&?2),Y2,u2);

In thisexample NN=[2 2 12 0 (. This does not mean that output 2 does not
depend on past inputs at all. If NN had been chosento [2 2 12 2] the input
signal would then have entered the network twice This is of course not
relevant except when physicd knowledge motivates that an output depends on
cetain inputs and delayed inputs and it should only be used when appropriate
entriesin W1 and W2 are set to 0.

Algorithm
The network istrained to minimizethe aiterion
9(t6) = g(y(t =1),...,y(t —n,),ut =n),...,u(t = n, —n, +1))
using a Levenberg-Marquardt algorithm. The weighting matrix Gammais

usualy chosen as the noise mvariance This can be estimated with the function
NNIGLS.

See Also
NNVALID, NNIGLS, NNARX.

Reference
L. Ljung: “ System Identification - Theory for the User,” Prentice-Hall, 1987.

Neural Network Based System I dentification Toolbox User’s Guide 2-33

nneval

nneval

Pur pose
Validation of feadforward neura networks.

Synopsis
[Yhat,E,NSE] = nneval (NetDef, W1,W2,PHI,Y)

Inputs
Seefor example one of the functions: MARQ, RPE, BATBP, INCBP.

Outputs

Yhat: Network predictions.
E: Prediction errors.
NSSE:Normalized sum of squared errors (SE/2N).

Description

The function validates models trained with MARQ, RPE, BATBP, INCBP,
MARQLM. The following plots are produced:

- Output together with predicted outptt.

- Prediction error.

- Auto-correlation function of prediction error.

- A histogram showing the distribution of the prediction errors

Example

>> PHI = 2*pi*rand(1,300);

>> Y= dgn(PHI) + 0.2*randn(1,300);

>> W1 = rand5,2);

>> W2 = rand1,6);

>> NetDef = ["HHHHH’;" L----];

>> trparms= [300002 1 Q;

>> [WLW2,critvegiter,lambda =marq(NetDef, W1,W2,PHI,Y,trparms);
>> PHI2 = 2*pi*rand1,300);

>> Y2 = 9n(PHI2) + 0.2*randn(1,length(PHI2);

>> nneval(NetDef, W1,W2,PHI2,Y2 trparms);

See Also
NNVALID, IFVALID, IOLEVAL.

2-34

nnfpe

nnfpe

Pur pose
Final Prediction Error estimate (FPE) for 1/0 models of dynamic systems.

Synopsis
[FPE,deff,varest,H] =...
nfpe(method NetDef, W1,W2,U,Y,NN,trparms,skip,Chat)

Input
Seethe function that was used for creding the model. The agument Chat
should only be included if method="'nnarmax1'.

Output

FPE: The Fina prediction error estimate.
deff: The dfedive number of parameters.
varest: Estimate of noise variance

H: The GaussNewton Hessan.

Description

The function cdculates Akaike's final prediction error estimate of the average
generdizaion error for models generated by NNARX, NNOE,
NNARMAX1+2. The function produces the final prediction error estimate
(FPE), the dfedive number of weights in the network if the network has been
trained with weight deca, an estimate of the noise variance, and the Gauss
Newton Hessan.

See Also
LOO, FPE.

References

J. Larsen & L.K. Hansen: “ Generali zation Performance of Regularized Neural
Network Models." Proc. of the IEEE Workshop on Neura networks for Signal
Proc. 1V, Piscaaway, New Jersey, pp.42-51, 1994

Neural Network Based System I dentification Toolbox User’s Guide 2-35

nnigls

nnigls

Pur pose
Iterated Generalized Least Squares training of a NNARX model with multiple
outputs.

Synopsis
[WL,W2,lambda Gamma] =...

rgis(NetDef, NN,W1,W2,trpar ms,repeat, Gamma, Y,U)
Input
U,Y,NN,W1,W2: SeeNNARXM
reped: Reped the IGLS procedure repeat times. If passed as|] it is st to 5.
Gamma: Initial estimate of the mvariance matrix for the noise. If passed as []
it is %t to the identity matrix.
trparms. Vedor containing parameters associated with the training (see
MARQ). Default values (obtained if trparms=[]): trparms=[50 0 1 §

Output
W1, W2, lambda: Seethe function NNARXM.
Gamma: The estimated covariance matrix.

Description
A multi-output NNARX model and the noise @variance matrix are estimated
with an iterative relaxation procedure.
It isimportant to noticethat the model returned from this function will produce
predictions of scded outputs (seethe Algorithm paragraph). It is necessary to
multiply the output by sgqrtm(Gammma) to obtain the unscaded predictions. If the
network has linea output units one can insteal scade the hidden-to-output layer
weights: W2= sgrtm(Gamme)* W2.

Algorithm
The implemented IGLS procedure is very smple

for j=1:repeat,
Train the network
Estimate the covariance matrix
end

The network is trained with the function MARQ acarding to the aiterion

2-36

nnfpe

6, =V (0.2") = 2= (v - 5(0)) A2 (v - 500)

t=

1 T A1
=—»M ¢ (t,0)N_&(t,0
N tz (t, N ,€(t,0)
and the variance matrix is estimated as

. 1N A A
AN ==Y g(t,0")e" (t,0)
N2

J

To reduce the anount of computations the network is trained by first scding
the outputs as

y(t) = Zy(t)
where
AN=3"%
and subsequently train the network acmrding to
A 1 &/ N _ N
6, =Vu(0.2M= 505 () - 50))" (v0) - 9(t/6))

t=

If the network has linea output units, W2 should be scaed by W2u =3"W2.

See Also

NNARXM, NNVALID, MARQ, IGLS.

Reference

T.JFog, J. Larsen, L.K. Hansen: Training andEvaluation o Neural Networks
for Multi-Variate Time-Series Processng. Proc. IEEE International
Conference on Neural Networks, Perth, Australia.

Neural Network Based System I dentification Toolbox User’s Guide 2-37

nniol

nniol

2-38

Purpose

| dentify a neural network model well-suited for control by discrete input-output
lineaization.

Synopsis
[WLf,W2f W1g,W2g,critveciterationlambda =...
niol (NetDeff,NetDefg, NN,W1f,W2f, W1g,W2g,trparms,Y,U)

Input

u: Input data (= control signal) (left out in the nnarma cae)
matrix. Dimension: [(inputs) * (# of data)]

Y: Output data. Dimension: [1 * (# of data)]

NN: NN=[nanb rk].

na =# of past outputs used for determining the prediction.
nb = # of past inputs.
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as
there aeinputs.
NetDeff: Architedure of network used for modelli ng the function f (see
below).
NetDefg: Archtedure of network used for modelli ng the function g.
W1f,W2f: Input-to-hidden layer and hidden-to-output layer weights for
W1lgW2g the"f" and"g" nets, respedively.
dim(W1f / W1g) = [(# of hidden units) * (na+nb)]
dim(W2f / W2g) =[1 * (# of hidden units)]
If the weight matrices are passed as[] they will beinitiaized
automaticaly.
trparms: Contains parameters asociated with the training (seeMARQ)
if trparms=[] is passd the default trparms= [500 0 1 () is used.

Seefunction MARQ for a more detail ed explanation of ‘trparms’.

Ouput
Seethe function MARQ for an explanation of the returned variables.

Description
Train a neural network to model a dynamic system on the following form:
9(t)e) = f(y(t-1),....y(t-n,),u(t-n, -1),...,u(t-n, -n, +1))
+ g(y(t-D,.., y(t-n,),u(t-n -1),...,u(t-n, -n, +H)u(t-n,)

nniol

with the Levenberg-Marquardt method. This type of model is particularly
relevant in the cntext of control by discrete input-output lineaization.

Examples

>> |oad spmdata
>> NetDeff = ['"HHHHH';'L----"];
>> NetDefg = ['HHH';'L--'];
>> NN=[22 1;
>> trparms=[3000 1 &3];
>> [WILf,W2f W1g,W2g,critveciter,lambdd =...
nniol (NetDeff,NetDefg,NN,[] ,[] ,[] .[] ;trparms,y1,ul);
>> [yhat,NSE]=iolewal (NetDeff,NetDefg, NN,WL1f,W2f, W1g,W2g,y2,u2);

See Also
IOLEVAL.

Neural Network Based System I dentification Toolbox User’s Guide 2-39

nniol

nnloo

Purpose

2-40

Estimate the average generaization error for a NNARX model of a dynamic
system by leare-one-out crossvalidaton.

Synopsis

Eloo =nnloo(NetDef, NN,W1,W2,trparms,U,Y)

Input

NetDef, W1, W2, NN

U, Y, trparms : Seethe function NNARX

If the variable max_iter=0 in trparms, linea unleaning is used for obtaining an
cheg approximation to the LOO estimate. If max_iter>0 the network will be
retrained a maximum of max_iter iterations for ead input-output pair that is
left out.

Output

Eloo: The leave-one-out crossvalidation estimate of the aerage
generdizdion error

Description

LOO cdculates an approximation to the lease-one-out estimate of the average
generdizdion error.

Algorithm

When max_iter=0 so-cdled "linea unleaning” is used to adieve a quick
approximation to the LOO-estimate. This approximation is much easier to
compute than the true LOO-estimate, but is in general lessreliable. Typicdly it
is comparable to the FPE-estimate. Seethe reference below for a derivation.

See Also

NNFPE for Akaike'sfinal prediction error estimate.

Reference

L.K. Hansen and J. Larsen (1999: "Linear Unlearning for CrossValidation,"
submitted for Advancesin Computational Mathematics, 1995

nnoe

nnoe

Purpose

| dentify a neural network output error model.

Synopsis
[WL, W2

Input
uU:

Y:
NN:

W1,W2:

trparms:

skip:

,critvegiter,lambda =nnoe(NetDef, NN,W1,W2,trparms,skip,Y,U)

Input data (= control signal) (left out in the nnarma cae)

matrix. Dimension: [(inputs) * (# of data)]

Output data. Dimension: [1 * (# of data)]

NN=[nanb rk].

na =# of past predictions used for determining the prediction.

nb = # of past inputs.

nk = time delay (usually 1).

For multi-input systems, nb and nk contain as many columns as there
areinputs.

Input-to-hidden layer and hidden-to-output layer weights.

dim(W21)= [(# of hidden units) * (na+nbt+1)]

dim(W2)=[1 * (# of hidden units)]

If they are passed as (], they are initialized automaticaly.

Contains parameters asociated with the training (seemarq).

if trparms=[] is passed the default trparms=[500 0 1 Q) is used.

Dont use thefirst 'skip' samples in the training to reducethe
influence from the transient occuring becaise of unknown initial
predictions and gradient. If skip=[] is passed the default skip=0 is
used.

Seefunction MARQ for a more detail ed explanation of ‘trparms’.

Ouput

Seethe function MARQ for an explanation of the returned variables.

Description
Determines a nonlinea output error (OE) model:

9(t6) = o(9(t —16)...., 9(t —n,[8),u(t = ny)....,u(t —n, —n, +1))

of a dynamic system by training a two layer neura network with the
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (M1SO).

Neural Network Based System I dentification Toolbox User’s Guide

2-41

nnoe

Examples

>> |oad spmdata

>> NetDef = ['HHHH’; 'L---1;

>> NN=[22 1;

>> trparms=[3000 1 &3];

>> [WLW2,critveciter,lambda =nnoe(NetDef,NN,[] ,[] ,trparms,10,y1,ul);
>> [yhat,NSE]=nnvalid('nnce’,NetDef, NN,W1,W2,y2,u2);

Algorithm

The name NNOE is chosen becaise the regressors are similar to those of an
output error (OE) model.

See Also
NNPRUNE, NNVALID.

Reference

L. Ljung:
“ System Identification - Theory for the User,” Prentice-Hall, 1987.

J. §6berg, H. Hjamerson, L. Ljung: “ Neural Networksin System
Identification,” Preprints 10th IFAC symposium on SY SID, Copenhagen.
Vol.2, pp. 4971

O. Serensen: “ Neural Networksin Control Applications,” Ph.D. Thesis.
Aalborg University, Department of Control Engineeing, 1994

2-42

nnprune

nnprune
Pur pose
Prune neural network models of dynamic systems with the Optimal Bran
Surgeon (OBS).
Synopsis
[thdNSSEvecFPEvegNS Etestvecdeff_vegpved = ...
nnprune(method NetDef, W1,W2,U,Y,NN,trparms,prparms,U2,Y2,skip,Chat)

Input

method: The function used for creding the model. For example
method="nnarx' or method="nnoe'.

NetDef, W1, W2,

U, Y, trparms. Seethe function used for creaing the model.

U2,Y 2 (optional): Test data. This can be used for pointing out the the optimal
network architedure. Passtwo []'sif atest set is not
available.

skip (optiond): Seefor example NNOE or NNARMAX1/2. If passed as|]
itis et toO.

Chat (optional): SeeNNARMAX1

prparms: Parameters associated with the pruning sesson.
prparms = [iter RePercent]
iter: Max. number of retraining iterations.

RePercent : Prune 'RePercent’ percent of the remaining
weights (O = prune one weight at atime).
If passed as|[] iswill bereset to prparms=[50 (.
Output
thd: Matrix containing all the parameter vedors
NSS&Evec Vedor containing the normalized sum of sguared errors
(SE/2N), the training err or, after ead weight elimination
FPEvec Contains the FPE estimate of the arerage generalization error
NSSEtestvec Containsthe test error (SSE/2N for test set).
Oeff_vec Contains the "effedive’ number of weights.
pvec Index into the &ove vedors.
Description

This function applies the Optimal Brain Surgeon (OBS) strategy for pruning
neural network input-output models of dynamic systems. That is, models

Neural Network Based System I dentification Toolbox User’s Guide 2-43

nnprune

2-44

produced by one of the functions:. NNARX, NNARMAX1, NNARMAX2,

NNOE. Two different procedures are possble:

» Eliminate one weight, retrain, eliminate one weight, retrain,

» Eliminate 5% (or some other percentage) of the remaining weights, retrain,
eliminate 5% of the remaning weightsretrain,

The function will return a matrix containing the parameter vedors (a vedor
containing all weights), obtained after ead retraining. The optimal parameter
vedor is then chosen afterwards. For example & the one representing the
network leading to the smallest FPE or the one lealing to the smallest test error
(if a test set is available). After having determined the optima number of
weights, the weight matrices are etraded from the thd-matrix with the
function NETSTRUC. If aNNARMAX1 model has been pruned, remember to
remove the bottom nc rows from thd first since these mntain the wefficients of
the C-polynomial.

It is important that the network is trained to the minimum of the aiterion
be