Convolutional Autoencoder

  • MNIST dataset
  • Convolutional Neural Network
  • 2 hidden layers
In [1]:
!pip install torch torchvision
Requirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (1.1.0)
Requirement already satisfied: torchvision in /usr/local/lib/python3.6/dist-packages (0.3.0)
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from torch) (1.16.4)
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from torchvision) (1.12.0)
Requirement already satisfied: pillow>=4.1.1 in /usr/local/lib/python3.6/dist-packages (from torchvision) (4.3.0)
Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow>=4.1.1->torchvision) (0.46)

1. Settings

1) Import required libraries

In [0]:
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.init as init
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
%matplotlib inline

2) Set hyperparameters

In [0]:
batch_size = 256
learning_rate = 0.0002
num_epoch = 5

2. Data

1) Download Data

In [0]:
mnist_train = dset.MNIST("./", train=True, transform=transforms.ToTensor(), target_transform=None, download=True)
mnist_test = dset.MNIST("./", train=False, transform=transforms.ToTensor(), target_transform=None, download=True)

2) Set DataLoader

In [0]:
train_loader = torch.utils.data.DataLoader(mnist_train,batch_size=batch_size, shuffle=True,num_workers=2,drop_last=True)
test_loader = torch.utils.data.DataLoader(mnist_test,batch_size=batch_size, shuffle=False,num_workers=2,drop_last=True)

4. Model & Optimizer

1) Model

In [0]:
class Encoder(nn.Module):
    def __init__(self):
        super(Encoder,self).__init__()
        self.layer1 = nn.Sequential(
                        nn.Conv2d(1,16,3,padding=1),                            # batch x 16 x 28 x 28
                        nn.ReLU(),
                        nn.BatchNorm2d(16),
                        nn.Conv2d(16,32,3,padding=1),                           # batch x 32 x 28 x 28
                        nn.ReLU(),
                        nn.BatchNorm2d(32),
                        nn.Conv2d(32,64,3,padding=1),                           # batch x 32 x 28 x 28
                        nn.ReLU(),
                        nn.BatchNorm2d(64),
                        nn.MaxPool2d(2,2)                                       # batch x 64 x 14 x 14
        )
        self.layer2 = nn.Sequential(
                        nn.Conv2d(64,128,3,padding=1),                          # batch x 64 x 14 x 14
                        nn.ReLU(),
                        nn.BatchNorm2d(128),
                        nn.MaxPool2d(2,2),
                        nn.Conv2d(128,256,3,padding=1),                         # batch x 64 x 7 x 7
                        nn.ReLU()
        )
        
                
    def forward(self,x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.view(batch_size, -1)
        return out
    
In [0]:
class Decoder(nn.Module):
    def __init__(self):
        super(Decoder,self).__init__()
        self.layer1 = nn.Sequential(
                        nn.ConvTranspose2d(256,128,3,2,1,1),                    # batch x 128 x 14 x 14
                        nn.ReLU(),
                        nn.BatchNorm2d(128),
                        nn.ConvTranspose2d(128,64,3,1,1),                       # batch x 64 x 14 x 14
                        nn.ReLU(),
                        nn.BatchNorm2d(64)
        )
        self.layer2 = nn.Sequential(
                        nn.ConvTranspose2d(64,16,3,1,1),                        # batch x 16 x 14 x 14
                        nn.ReLU(),
                        nn.BatchNorm2d(16),
                        nn.ConvTranspose2d(16,1,3,2,1,1),                       # batch x 1 x 28 x 28
                        nn.ReLU()
        )
        
    def forward(self,x):
        out = x.view(batch_size,256,7,7)
        out = self.layer1(out)
        out = self.layer2(out)
        return out

2) Loss func & Optimizer

In [8]:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

encoder = Encoder().to(device)
decoder = Decoder().to(device)

# ÀÎÄÚ´õ µðÄÚ´õÀÇ ÆĶó¹ÌÅ͸¦ µ¿½Ã¿¡ ÇнÀ½ÃÅ°±â À§ÇØ À̸¦ ¹­´Â ¹æ¹ýÀÔ´Ï´Ù.
parameters = list(encoder.parameters())+ list(decoder.parameters())

loss_func = nn.MSELoss()
optimizer = torch.optim.Adam(parameters, lr=learning_rate)
cuda:0

5. Train

In [9]:
# ¸ðµ¨À» ºÒ·¯¿À´Â ¹æ¹ýÀÔ´Ï´Ù.
# Å©°Ô µÎ°¡Áö ¹æ¹ýÀÌ Àִµ¥ ¿©±â »ç¿ëµÈ ¹æ¹ýÀº Á» ´Ü¼øÇÑ ¹æ¹ýÀÔ´Ï´Ù.
# https://pytorch.org/tutorials/beginner/saving_loading_models.html

try:
    encoder, decoder = torch.load('./model/conv_autoencoder.pkl')
    print("\n--------model restored--------\n")
except:
    print("\n--------model not restored--------\n")
    pass

for i in range(num_epoch):
    for j,[image,label] in enumerate(train_loader):
        optimizer.zero_grad()
        image = image.to(device)
        
        output = encoder(image)
        output = decoder(output)
        
        loss = loss_func(output,image)
        loss.backward()
        optimizer.step()
        
    if j % 10 == 0:
        # ¸ðµ¨ ÀúÀåÇÏ´Â ¹æ¹ý
        # ÀÌ ¿ª½Ã Å©°Ô µÎ°¡Áö ¹æ¹ýÀÌ Àִµ¥ ¿©±â »ç¿ëµÈ ¹æ¹ýÀº Á» ´Ü¼øÇÑ ¹æ¹ýÀÔ´Ï´Ù.
        # https://pytorch.org/tutorials/beginner/saving_loading_models.html
        torch.save([encoder,decoder],'./model/conv_autoencoder.pkl')
        print(loss)
--------model not restored--------

6. Check with Train Image

In [10]:
out_img = torch.squeeze(output.cpu().data)
print(out_img.size())

for i in range(5):
    plt.subplot(1,2,1)
    plt.imshow(torch.squeeze(image[i]).cpu().numpy(),cmap='gray')
    plt.subplot(1,2,2)
    plt.imshow(out_img[i].numpy(),cmap='gray')
    plt.show()
torch.Size([256, 28, 28])
In [0]:
with torch.no_grad():
    for j,[image,label] in enumerate(test_loader):
       
        image = image.to(device)
        output = encoder(image)
        output = decoder(output)
        
    if j % 10 == 0:
        print(loss)        
In [12]:
out_img = torch.squeeze(output.cpu().data)
print(out_img.size())

for i in range(5):
    plt.subplot(1,2,1)
    plt.imshow(torch.squeeze(image[i]).cpu().numpy(),cmap='gray')
    plt.subplot(1,2,2)
    plt.imshow(out_img[i].numpy(),cmap='gray')
    plt.show()
torch.Size([256, 28, 28])
In [0]: