왜 컨볼루셔널 인공신경망이 필요할까? (Why Convolutional Neural Network?)

  • MNIST data
  • Àΰø½Å°æ¸Á ¸¸À¸·Î ¾î´ÀÁ¤µµ ¼º´ÉÀÌ ³ª¿À´ÂÁö È®ÀÎÇغ¸ÀÚ
  • 5.6 ±âº»ÀûÀÎ ÇÕ¼º°ö ½Å°æ¸Á ½Ç½ÀÀ» ¸ÕÀúº¸°í ÀÌ ÆÄÀÏÀ» º¸½Ã¸é µË´Ï´Ù.
In [1]:
# ÆÄÀÌÅäÄ¡ ¹× ÅäÄ¡ºñÁ¯ ¼³Ä¡
# ·±Å¸ÀÓÀ» GPU ¸ðµå·Î ¹Ù²ã¼­ ½ÇÇàÇϼ¼¿ä
!pip install torch torchvision
Requirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (1.1.0)
Requirement already satisfied: torchvision in /usr/local/lib/python3.6/dist-packages (0.3.0)
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from torch) (1.16.4)
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from torchvision) (1.12.0)
Requirement already satisfied: pillow>=4.1.1 in /usr/local/lib/python3.6/dist-packages (from torchvision) (4.3.0)
Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow>=4.1.1->torchvision) (0.46)

1. Setting

1) Import Required Libraries

In [0]:
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.init as init

import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

import matplotlib.pyplot as plt

2) Set hyperparameters

In [0]:
batch_size = 256
learning_rate = 0.0002
num_epoch = 10

3. Data Generation

1) Download Data

In [4]:
mnist_train = dset.MNIST("../", train=True, transform=transforms.ToTensor(), target_transform=None, download=True)
mnist_test = dset.MNIST("../", train=False, transform=transforms.ToTensor(), target_transform=None, download=True)
0it [00:00, ?it/s]
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../MNIST/raw/train-images-idx3-ubyte.gz
9920512it [00:01, 8279782.88it/s]                             
Extracting ../MNIST/raw/train-images-idx3-ubyte.gz
  0%|          | 0/28881 [00:00<?, ?it/s]
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../MNIST/raw/train-labels-idx1-ubyte.gz
32768it [00:00, 132105.71it/s]           
  0%|          | 0/1648877 [00:00<?, ?it/s]
Extracting ../MNIST/raw/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../MNIST/raw/t10k-images-idx3-ubyte.gz
1654784it [00:00, 2246600.29it/s]                           
0it [00:00, ?it/s]
Extracting ../MNIST/raw/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../MNIST/raw/t10k-labels-idx1-ubyte.gz
8192it [00:00, 50416.04it/s]            
Extracting ../MNIST/raw/t10k-labels-idx1-ubyte.gz
Processing...
Done!

2) Check Dataset

In [5]:
print(mnist_train.__getitem__(0)[1], mnist_train.__len__())
mnist_test.__getitem__(0)[1], mnist_test.__len__()
5 60000
Out[5]:
(7, 10000)

3) Set DataLoader

In [0]:
train_loader = torch.utils.data.DataLoader(mnist_train,batch_size=batch_size, shuffle=True,num_workers=2,drop_last=True)
test_loader = torch.utils.data.DataLoader(mnist_test,batch_size=batch_size, shuffle=False,num_workers=2,drop_last=True)

4. Model & Optimizer

1) CNN Model

In [0]:
class Linear(nn.Module):
    def __init__(self):
        super(Linear,self).__init__()
        self.layer = nn.Sequential(
            nn.Linear(784,300),
            nn.ReLU(),
            nn.Linear(300,100),
            nn.ReLU(),
            nn.Linear(100,10),
            nn.ReLU()
        )       
        
    def forward(self,x):
        out = x.view(batch_size,-1)
        out = self.layer(out)

        return out

2) Loss func & Optimizer

In [8]:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

model = Linear().to(device)
loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
cuda:0

5. Train

In [9]:
loss_arr =[]
for i in range(num_epoch):
    for j,[image,label] in enumerate(train_loader):
        x = image.to(device)
        y_= label.to(device)
        
        optimizer.zero_grad()
        output = model.forward(x)
        loss = loss_func(output,y_)
        loss.backward()
        optimizer.step()
        
        if j % 1000 == 0:
            print(loss)
            loss_arr.append(loss.cpu().detach().numpy())
tensor(2.3020, device='cuda:0', grad_fn=<NllLossBackward>)
tensor(0.6016, device='cuda:0', grad_fn=<NllLossBackward>)
tensor(0.4865, device='cuda:0', grad_fn=<NllLossBackward>)
tensor(0.4345, device='cuda:0', grad_fn=<NllLossBackward>)
tensor(0.5115, device='cuda:0', grad_fn=<NllLossBackward>)
tensor(0.3799, device='cuda:0', grad_fn=<NllLossBackward>)
tensor(0.3948, device='cuda:0', grad_fn=<NllLossBackward>)
tensor(0.4184, device='cuda:0', grad_fn=<NllLossBackward>)
tensor(0.3762, device='cuda:0', grad_fn=<NllLossBackward>)
tensor(0.3543, device='cuda:0', grad_fn=<NllLossBackward>)
In [0]:
#param_list = list(model.parameters())
#print(param_list)

5. Visualize Training Loss

In [10]:
plt.plot(loss_arr)
plt.show()

6. Test

In [11]:
correct = 0
total = 0

with torch.no_grad():
  for image,label in test_loader:
      x = image.to(device)
      y_= label.to(device)

      output = model.forward(x)
      _,output_index = torch.max(output,1)

      total += label.size(0)
      correct += (output_index == y_).sum().float()

  print("Accuracy of Test Data: {}".format(100*correct/total))
Accuracy of Test Data: 87.36978912353516
In [0]: