DES Dynamic Equations

$$\begin{cases} q' = (s', r') = \delta_{int}(q) \oplus \delta_{ext}(q, x) \\ = \delta_{int}(s, r) \oplus \delta_{ext}((s, r), x) \\ y = \lambda(s, r) \end{cases}$$

Interpretation

$$\mathbf{q'} = \underbrace{\delta_{int}(\mathbf{s}, \mathbf{r})}_{\text{(s, r)}} \oplus \underbrace{\delta_{ext}((\mathbf{s}, \mathbf{r}), \mathbf{x})}_{\text{(s, r)}} = \begin{cases} \delta_{ext}((\mathbf{s}, \mathbf{r}), \mathbf{x}) \text{ if only } \delta_{ext} \text{ occurs} \\ \delta_{ext}((\mathbf{s}, \mathbf{r}), \mathbf{x}) \text{ if only } \delta_{ext} \text{ occurs} \\ \text{(s, r), x) if only } \delta_{ext} \text{ occurs} \end{cases}$$

$$y = \lambda(s, r)$$
 : always occurs with $\delta_{int}(s, r)$

 $\int \delta_{int}(s, r)$ if only δ_{int} occurs

DEVS Graph

• DEVS graph $G = \langle V, E \rangle$

- Visual representation of DEVS atomic model in a labeled graph
- ✤ V represents DEVS sequential (discrete) state
 - V = S
- ✤ E represents internal or external transition with labels on E
 - $E \subseteq V \times V$ with a label $(X \cup Y \cup \{\epsilon\}) \times \mathbf{R}$
 - X: input; Y:output; ε: empty input; R: elapsed time

• Representation Example

Schedule Conflict(Tie)

• Event scheduling: Only for output event by ta after each state transition

• Assumptions on Atomic DEVS Modeling

- ★ A-1: Transition either by input or by input-free, but not both :: $q' = \delta_{int}(q) \oplus \delta_{ext}(q, x)$
- ★ A-2: Arriving one input event at a time :: $\delta_{ext}(q, x)$

1n

- ✤ External(in1) and External(in2) Events
 ➔ Violation of A-2
- ✤ Internal(out1) and Internal(out2) Events
 ➔ Never happen (because one output for a state)

out

out

EE612

Tie-break ==> Select : $2^{\{Mi\}} \rightarrow \{M_i\}$

conflict resolution: priority of internal transitions of models that cause conflict.

◆ Case A-1: For M1, Internal and external transitions are conflict

Case A-2: For M2, two inputs are conflict

Tie-break:: Select ({M1, M3}) = M1

$$\downarrow$$

$$\delta_{int} ((s, r)) \text{ for M1 is applied first}$$
Then, $\delta_{int} ((s, r)) \text{ for M3}$

→ Select decides order of q' = $\delta_{int}(q) \oplus \delta_{ext}(q, x)$ when both transition occur

Schedule continuation or override

Assume: $ta(s_0) = r_0$ current simulation time: t

case 1: no input is arrived in next r0 time unit at $(t + r_0)$, internal transition :: $(s_0, r_0) \rightarrow (s_1, 0)$ generate output y new schedule $r_1 = ta(s_1)$

```
case 2: an input x is arrived in next e < r_0 time unit
at (t + e), external transition :: ((s_0, e), x) \rightarrow (s_2, 0)
case 2-1: continuation of previous schedule
ta(s_2) = r_2 = r_0 - e
case 2-2: cancel previous schedule and make a new one
ta(s_2) = r_2 = new value
```


Time chart for schedule continuation/override

Case 2-1: continuation of previous schedule

Continuation in DEVSim++

- Time advance : ta(s)
 - ✤ ta is decided based only on the current discrete state
 - Executed after both internal(input-free) and external(inputted) state transitions
 - ✤ Time advance after internal transition
 - A new schedule for a new state is required: ta(current-state) = new-value
 - ✤ Time advance after external transition
 - Schedule at the previous state (ta-old) may exist
 - ta(current-state) after external transition is either continuation of old one or new one.
 - Time advance after external transition
 - For continuation extra state variables (ta-old, e) may be required (ta-old: existing schedule; e: time elapsed after existing schedule)
 - ✤ Time advance at current state
 - ta(current-state) = ta-old e for continuation of existing schedule
 = new-value otherwise
- Macro *continue* in DEVSim++
 - continue :: ta(current-state) = ta-old e
 - DEVSim++ *continue* can be used within external transition function without extra state vars by users

Select in General Case

Sel ($\{A, B\}$):: Priority between A and B

In AB, Priority between A and B is specified In E, Priority among AB, C and D is specified

ABCDE = < Sel>	> : Priority among AB, CD, E
AB = <sel></sel>	: Priority among A, B, F
CD = <sel></sel>	: Priority between C, D
F = <sel></sel>	: Priority between H, G

Limitation of Select function

Assume the following priority between outputs

- \bigstar M1.out1 > M2.out4 and M2.out3 > M1.out2

 - M1.out1 > M2.out4 → sel ({M1, M2}) = M1
 M2.out3 > M1.out2 → sel ({M1, M2}) = M2 Conflict

 \rightarrow DEVS *Sel* function cannot be used for specification of the above conflict case.

Solution

- Sol 1: Break each of M1 and M2 into two models, each with one output only.
- Sol 2: Modify selection function
 - sel : $2^{Y} \rightarrow Y$, $Y = \bigcup_{i} Y_{i}$: set of all output ports within a coupled model

Execution Sequence of General Program: Calling order

10 of 12

Execution Sequence of Simulation Program: Time order

11 of 12

KAIST EE612

Lecture 8

