

Introduction to DEVS Modeling and
Simulation with JAVA: Developing

Component-Based Simulation Models

Bernard P. Zeigler

Arizona Center for Integrative Modeling and Simulation

Electrical & Computer Enginering

College of Engineering and Mines

University of Arizona

Tucson, Arizona, USA

Hessam S. Sarjoughian

Arizona Center for Integrative Modeling and Simulation

Computer Science & Engineering

Fulton School of Engineering

Arizona State University

Tempe, Arizona, USA

January 2005

Copyright by the Authors

Draft Version 3

List of Chapters

Chapter 1..6

INTRODUCTION TO DEVS MODELING & SIMULATION METHODOLOGY........6
Framework for Modeling and Simulation ..6

Brief Review of the DEVS Concepts ..6
Basic Models ...8

Coupled Models ...9
Hierarchical Model Construction ...10

The DEVS Formalism...10
Classic DEVS System Specification ...10

Summary...12
Chapter 2..13

WORKING WITH SIMPLE DEVS MODELS ...13
DEVS SISO Models..13

Passive...14
Storage ..16
Generator ...17
Binary Counter ..18

Ramp ...19
Summary...20
Exercises...20

Solutions ...21
Chapter 3..26

DEVSJAVA CLASSES AND METHODS ..26
Container Classes ...26

DEVS Classes ...27
Class devs...28
Class message...29
Class atomic..30

Class coupled ..31
Class digraph ..31

Implementing the Single Input/Single Output DEVS32
Class classic ..32

Class siso..33

Table of Contents

 3

Chapter 4..34
PARALLEL DEVS MODELS IN DEVSJAVA..34

Parallel DEVS Basic Models ..34
Examples: Processor Models..35
Pseudo-code Example: Simple Processor...35

Simple Processor Expressed in Parallel DEVS......................................38

Implementing the Simple Processor in DEVSJAVA38
Another Example: Adding a Buffer to the Simple Processor42
Processor with Random Processing Times..45
Processor Priority Queue...46

Models with Multiple Input and Output Ports48
DEVS Model of a Switch..48
DEVSJAVA Implementation of the Switch..49

Sending/Receiving/Interpreting Messages..51

More Atomic Models in DEVSJAVA...53
Storage with Ports for storing and retrieval53
Processor with (name, job) Input and Output Ports..........................54
Event List (Delay) Element..55

Experimental Frame Components..57
Stop/Start Generator..57
Generator of Time Consuming Jobs..58
Transducer..59

Summary...62
Exercises...62
Solution...66

Chapter 5..71

PARALLEL DEVS COUPLED MODELS ...71
Coupled Models in the DEVS Formalism ...71

Component Requirements:..71
Coupling Requirements:..72

Example: Simple Pipeline...73
Implementing Coupled Models in DEVSJAVA.......................................74
The Behavior of Coupled Models ...74
More Examples of Coupled Models ..76

Switch Network ...76
Generator/Processor/Transducer..78

Table of Contents

 4

Experimental Frame...79
Hierarchical Models...81

Implementing Hierarchical Models in DEVSJAVA...............................81
Summary...82
Exercises...82

Chapter 6..84

EXERCISING MODELS: PARALLEL DEVS SIMULATION PROTOCOL84
Conservative and Optimistic Schemes ...84

Simulating DEVS Models with Conservative and Optimistic Schemes...86
Parallel DEVS Simulation Protocol ...87

Atomic Model Simulators...87
Coupled Model Coordinators..88
Expressing The Parallel DEVS Simulation Protocol as a Coupled Model 90

Summary...95

Exercises...95
Chapter 7..97

MULTIPROCESSOR ARCHITECTURES..97
Prototypical Processing Architectures...97

Performance of Simple Architectures ..98
Coordinators and Multiprocessor Architectures....................................99

Digraph Representation of the Architectures..................................100
Common Coordinator Class ...100

Divide and Conquer...102
Divide and Conquer Coordinator ..103
Divide and Conquer Architecture..105
Behavior of Divide and Conquer Architecture.................................105

Pipeline ...106
Pipeline Coordinator ...106
Pipeline Architecture...109
Behavior of Pipeline..110

Multiserver...111
Multiserver Coordinator ..111
Multiserver Architecture..113
Behavior of Multiserver...114

Turnaround Time and Throughput Relations for Series and Parallel
Systems ..116

Table of Contents

 5

Families of Models...116
Structural Inheritance...116

Range Inclusion Constraints on Coupling.......................................116
Homogeneous Coupled Models...118

Summary...118
Exercises...118

Solution...121
Solution...125

Chapter 8..129
SYSTEM ENTITY STRUCTURE ..129

Model Base Management By System Entity Structure130
System Entity Structure...132

System Entity-Structure/Model-Base (SES/MB) Framework.............133
Example: Design of a transaction processing system134

Automatic Pruning of an SES...139
Implementation of the SES in DEVSJAVA...140

SpecializationDEVS ..140
DEVSwithSpec...140

Examples of the SES in DEVSJAVA...142
Constraints on SpecializationDEVS and DEVSwithSpec....................146

Summary...147

Chapter 1

INTRODUCTION TO DEVS MODELING &
SIMULATION METHODOLOGY

Framework for Modeling and Simulation

The Discrete Event System Specification (DEVS) formalism provides a means
of specifying a mathematical object called a system. Basically, a system has a
time base, inputs, states, and outputs, and functions for determining next
states and outputs given current states and inputs. Discrete event systems
represent certain constellations of such parameters just as continuous
systems do. For example, the inputs in discrete event systems occur at
arbitrarily spaced moments, while those in continuous systems are piecewise
continuous functions of time. The insight provided by the DEVS formalism is
in the simple way that it characterizes how discrete event simulation
languages specify discrete event system parameters. Having this abstraction,
it is possible to design new simulation languages with sound semantics that
easier to understand. Indeed, the DEVJAVA environment to be described later
is an implementation of the DEVS formalism in Java, which enables the
modeler to specify models directly in its terms.

Brief Review of the DEVS Concepts

The conceptual framework underlying the DEVS formalism is shown in Figure
1. The modeling and simulation enterprise concerns three basic objects:

the Real system, in existence or proposed, which is regarded as
fundamentally a source of data

q Model, which is a set of instructions for generating data comparable to
that observable in the real system. The structure of the model is its
set of instructions. The behavior of the model is the set of all possible
data that can be generated by faithfully executing the model
instructions.

q Simulator, which exercises the model's instructions to actually
generate its behavior.

Introduction to DEVS modeling & Simulation

 7

q Experimental frame, which captures how the modeler’s objectives
impact on model construction, experimentation and validation. As we
shall see later, in DEVJAVA experimental frames are formulated as
model objects in the same manner as the models of primary interest.
In this way, model/experimental frame pairs form coupled model
objects with the same properties as other objects of this kind. It will
become evident later, that this uniform treatment yields key benefits
in terms of modularity and system entity structure representation.

Source

System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

behavior database

Figure 1 Basic entities and relations

The basic objects are related by two relations:

q Modeling relation linking real system and model, defines how well
the model represents the system or entity being modeled. In general
terms a model can be considered valid if the data generated by the
model agrees with the data produced by the real system in an
experimental frame of interest.

q Simulation relation, linking model and simulator, represents how
faithfully the simulator is able to carry out the instructions of the
model.

The basic items of data produced by a system or model are time
segments. These time segments are mappings from intervals defined over a
specified time base to values in the ranges of one or more variables. The
variables can either be observed or measured. An example of a data segment
is shown in Figure 2.

Chapter 1

 8

x0 x1X

S

Y
y0

e

t0 t1 t2

Figure 2 Discrete event time segments

The structure of a model may be expressed in a mathematical language
called formalism. The discrete event formalism focuses on the changes of
variable values and generates time segments that are piecewise constant.
Thus an event is a change in a variable value, which occurs instantaneously.

In essence the formalism defines how to generate new values for
variables and the times the new values should be take effect. An important
aspect of the formalism is that the time intervals between event occurrences
are variable (in contrast to discrete time where the time step is a fixed
number).

Basic Models

In the DEVS formalism, one must specify 1) basic models from which
larger ones are built, and 2) how these models are connected together in
hierarchical fashion.

To specify modular discrete event models requires that we adopt a
different view than that fostered by traditional simulation languages. As with
modular specification in general, we must view a model as possessing input
and output ports through which all interaction with the environment is
mediated. In the discrete event case, events determine values appearing on
such ports. More specifically, when external events, arising outside the model,
are received on its input ports, the model description must determine how it
responds to them. Also, internal events arising within the model change its
state, as well as manifesting themselves as events on the output ports to be
transmitted to other model components.

Introduction to DEVS modeling & Simulation

 9

A basic model contains the following information:

q the set of input ports through which external events are received

q the set of output ports through which external events are sent

q the set of state variables and parameters: two state variables are
usually present, “phase” and “sigma” (in the absence of external
events the system stays in the current “phase” for the time given
by “sigma”)

q the time advance function which controls the timing of internal
transitions – when the “sigma” state variable is present, this
function just returns the value of “sigma”.

q the internal transition function which specifies to which next state
the system will transit after the time given by the time advance
function has elapsed

q the external transition function which specifies how the system
changes state when an input is received – the effect is to place the
system in a new “phase” and “sigma” thus scheduling it for a next
internal transition; the next state is computed on the basis of the
present state, the input port and value of the external event, and
the time that has elapsed in the current state.

q the confluent transition function which is applied when an input is
received at the same time that an internal transition is to occur –
the default definition simply applies the internal transition function
before applying the external transition function to the resulting
sate.

q the output function which generates an external output just before
an internal transition takes place.

Coupled Models

Basic models may be coupled in the DEVS formalism to form a coupled
model. A coupled model tells how to couple (connect) several component
models together to form a new model. This latter model can itself be
employed as a component in a larger coupled model, thus giving rise to
hierarchical construction.

 A coupled model contains the following information:

q the set of components

q the set of input ports through which external events are received

q the set of output ports through which external events are sent

These components can be synthesized together to create hierarchical models
having external input and output ports.

The coupling specification consisting of:

q the external input coupling which connects the input ports of the
coupled to model to one or more of the input ports of the
components — this directs inputs received by the coupled model to
designated component models

Chapter 1

 10

q the external output coupling which connects output ports of
components to output ports of the coupled model- thus when an
output is generated by a component it may be sent to a designated
output port of the coupled model and thus be transmitted
externally

q the internal coupling which connects output ports of components to
input ports of other components- when an input is generated by a
component it may be sent to the input ports of designated
components (in addition to being sent to an output port of the
coupled model)

Hierarchical Model Construction

A coupled model can be expressed as an equivalent basic model in the DEVS
formalism. Such a basic model can itself be employed in a larger coupled
model. This shows that the formalism is closed under coupling as required for
hierarchical model construction. Expressing a coupled model as an equivalent
basic model captures the means by which the components interact to yield
the overall behavior.

The DEVS Formalism

In this section we start with the basic DEVS formalism and discuss a number
of examples using it. We then discuss the DEVS formalism for coupled models
also giving some examples. The DEVS formalism that we start with so called
Classic DEVS because it was the first version to be developed and after some
fifteen years, it successor was introduced as Parallel DEVS. As we will explain
later, Parallel DEVS removes constraints that originated with the sequential
operation of early computers and hindered the exploitation of parallelism, a
critical element in more modern computing.

Classic DEVS System Specification

A Discrete Event System Specification is a structure

, , , , , ,int extM X S Y taδ δ λ= 〈 〉

Where

X is the set of inputs

S is a set of states

Y is the set of outputs

:int S Sδ → is the internal transition function

:ext Q X Sδ × → is the external transition function, where

 () (){ , | ,0 }Q s e s S e ta s∈= ≤ ≤ is the total state set

 e is the time elapsed since last transition

: S Yλ → is the output function

Introduction to DEVS modeling & Simulation

 11

:ta S R+
0,∞→ is the time advance function

The interpretation of these elements is illustrated in Figure 3. At any time
the system is in some state, S . If no external event occurs the system will

stay in state S for time ()ta s . Notice that ()ta s could be a real number as

one would expect. But it can also take on the values 0 and ∞ . In the first
case, the stay in state S is so short that no external events can intervene –
we say that S is a transitory state. In the second case, the system will stay
in S forever unless an external event interrupts its slumber. We say that S is
a passive state in this case. When the resting time expires, i.e., when the
elapsed time, ()e ta s= , the system outputs the value, ()sλ , and changes to

state ()int sδ . Note output is only possible just before internal transitions.

If an external event x ∈ X occurs before this expiration time, i.e., when

the system is in total state (),s e with ()e ta s≤ , the system changes to state

(), ,ext s e xδ . Thus the internal transition function dictates the system’s new

state when no events have occurred since the last transition. While the
external transition function dictates the system’s new state when an external
event occurs – this state is determined by the input, x , the current state, S ,
and how long the system has been in this state, e , when the external event

occurred. In both cases, the system is then is some new state 'S with some

new resting time, ()ta s' and the same story continues.

xx yy

tata (s)(s)
ss

λ (λ (ss))

ss ’ ’ = = δδ
intint

((ss))

ss ’ ’ = = δδ
extext

((s,e,x)s,e,x)

Figure 3 DEVS in action

Warning: There is no way to generate an output directly from an external
input event. An output can only occur just before an internal transition. To

Chapter 1

 12

have an external event cause an output without delay, we have it “schedule”
an internal state with a hold time of zero. The relationship between external
transitions, internal transitions, and outputs are as shown in Figure 3.

The above explanation of the semantics (or meaning) of a DEVS model
suggests, but does not fully describe, the operation of a simulator that would
execute such models to generate their behavior. We will delay discussion of
such simulators to later chapters. However, the behavior of a DEVS is well
defined and can be depicted as we mentioned earlier in Figure 2. In that
figure, the input trajectory is a series of events occurring at times such as t0
and t2. In between, such event times may be those such as t1, which are
times of internal events. The latter are noticeable on the state trajectory,
which is a step-like series of states, which change at external and internal
events (second from top). The elapsed time trajectory is a saw-tooth pattern
depicting the flow of time in an elapsed time clock, which gets reset to 0 at
every event. Finally, at the bottom, the output trajectory depicts the output
events that are produced by the output function just before applying the
internal transition function at internal events. Such behaviors will be
illustrated in the next chapter.

Summary

The form of DEVS (discrete event system specification) discussed in this
chapter provides a hierarchical, modular approach to constructing discrete
event simulation models. In doing so, the DEVS formalism embodies the
concepts of systems theory and modeling. We will see later, that DEVS is
important not only for discrete event models, but also because it affords a
computational basis for implementing behaviors that are expressed in DESS
and DTSS, the other basic systems formalisms.

Chapter 2

WORKING WITH SIMPLE DEVS
MODELS

Unlike many commercial packages, DEVS does not cater to a specific
application domain, but is instead capable of expressing the full range of
discrete event models. The downside of this capability is that the learning
curve toward full DEVS modeling and simulation competence is steep. As a
consequence, we’ll break up the presentation into several easier-to-bite
pieces. First, we’ll discuss an artificially restricted class called siso (single
input/single output) which deals only with single real values as input and
output and does not allow juggling the values on multiple input and output
ports. Subsequently, we’ll add the capability to work with Classic DEVS
(multiple input and output ports, but only one input port event at a time).
Finally, we’ll graduate to the full capability of Parallel DEVS. Think of this as
learning to crawl in order to learn walk – after haven taken your first walk,
you’ll be reluctant to return to crawling, but the latter serves as a necessary
scaffold to get to the walking stage.

DEVS SISO Models

This chapter deals only with models that have only a single input and a single
output, both expressed as real numbers. These models are implemented
using the class siso as mentioned before. The table lists the models to be
discussed in this chapter.

Models I/O Behavior Description

passive never generates output

storage stores the input and responds with it when queried

generator outputs a 1 in a periodic fashion

binaryCounter outputs a 1 only when it has received an even

Chapter 2

 14

number of 1’s

ramp output acts like the position of a billiard ball that has
been hit by the input

Table 1 Examples of DEVS SISO models

Passive

The simplest DEVS to start with is one that literally does nothing. Illustrated
in Figure 4, it is a appropriately called passive, since it does not respond with
outputs no matter what the input trajectory happens to be.

in outpassive

x0 x1in

s

out

passive

Figure 4 Passive DEVS

 A simple implementation of this behavior is shown in the following DEVSJAVA
code fragment:

public class passive extends siso{1

public passive(String name){
 super(name);

1 Code presented in the text is often simplified for presentation;
see the corresponding class files in the SimpArc project for
complete versions of the class definitions.

Working with DEVS Models

 15

}

public void initialize(){
 phase = "passive";
 sigma = INFINITY;
 super.initialize();
 }

public void Deltext(double e,double input){
 passivate();
}

public void deltint(){
 passivate();
}

public double Out(){
 return 0;
}
}

The input and output sets are numerical. There is only one state “passive”. In
this state, the time advance given by ta is infinite. As already indicated, this
means the system will stay in passive forever unless interrupted by an input.
However, in this model, even such an interruption will not awaken it, since
the external transition function does disturb the state. The specifications of
the internal transition and output functions are redundant here since they will
never get a chance to be applied.

0

x1

respond

x1

response_time

respond

x1

0 x2

respond

x1

0 x2

sigma

x1

Figure 5 Trajectories for storage

Chapter 2

 16

Storage

In contrast to the Passive DEVS, the next system responds to its input and
stores it forever, or until the next input comes along. This is not very useful
unless we have a way of asking what is currently stored. So there is a second
input to do such querying. Since there is only one input port in the current
DEVS model, we let the input value of zero signal this query. As the first part
of Figure 5 shows, within a time, response_time, of the zero input arrival, the
Storage DEVS responds with the last stored non-zero input. To make this
happen, the model is implemented as follows in DEVSJAVA:

public class storage extends siso{
protected double store;
protected double response_time;

public storage(String name,double Response_time){
 super(name);
 store = 0;
 response_time = Response_time;
}

public void initialize(){
 phase = "passive";
 sigma = INFINITY;
 store = 0;
 response_time = 10;
 super.initialize();
 }

public void Deltext(double e,double input){
 Continue(e);
 if (phaseIs("passive")){
 if (input != 0) // 0 is query
 store = input;
 else holdIn("respond", response_time);
 }
}

public void deltint(){
 passivate();
}

public double Out(){
 if (phaseIs("respond")) return store;
 else return 0;
}
}

There are three state variables: phase with values {“passive“,“respond“},
sigma having positive real values, and store having real values other than
zero. We need the “respond” phase to tell when a response is underway.

Sigma keeps the time advance value. In other words, sigma is the time
remaining in the current state. Note that when an external event arrives after
elapsed time, sigma is reduced by e to reflect the smaller time remaining in
the current state. When a zero input arrives, sigma is set to response_time
and the “respond” phase is entered. However, if the system is in phase

Working with DEVS Models

 17

“respond” and an input arrives, the input is ignored as illustrated in the
second part of Figure 2. When the response_time period has elapsed, the
output function produces the stored value and the internal transition dictates
a return to the passive state. What happens if, as in the third part of Figure 2,
an input arrives just as the response period has elapsed? Classic DEVS and
parallel DEVS differ in their ways of handling this collision as we shall show
later.

active

period

1 11

Figure 6 Generator trajectories

Generator

While the store reacts to inputs it does not do anything on its own. In
contrast, a simple example of a proactive system is a generator. As illustrated
in Figure 6, it has no inputs but when started in phase “active”, it generates
outputs with a specific period. The generator has the two basic state
variables, phase and sigma. Note that the generator remains in phase
“active”, for the period, after which the output function generates a one
output and the internal transition function resets the phase to “active”, and
sigma to period. Strictly speaking, restoring these values isn’t necessary
unless inputs are allowed to change them (which they aren’t in this model).

public class generator extends siso{
protected int period;

public generator(String name,int Period){
 super(name);

Chapter 2

 18

 period = Period;
}
public void initialize(){
 phase = "active";
 sigma = period;
 super.initialize();
 }

public void deltint(){
 holdIn("active",period);
}

public double Out(){
 return 1;
}
}

Binary Counter

In this example, the DEVS outputs a “one” for every two “one”s that it
receives. To do this it maintains a count (modulo 2) of the “one”s it has
received to date. When it receives a “one” that makes its count even, it goes
into a transitory phase, “active”, to generate the output. This is the same as
putting response_time: = 0 in the Storage DEVS.

public class binaryCounterSiso extends siso{
 int count;

public binaryCounterSiso(String name){
 super(name);
}

public void initialize(){
 count = 0;
 super.initialize();
 }

public void Deltext(double e,double input){
 Continue(e);
 count = count + (int)input;
 if (count >= 2){
 count = 0;
 holdIn("active",10);
}
}

public void deltint(){
passivate();
}

public double Out(){
 if (phaseIs("active"))
 return 1;
 else return 0;
}
}

Working with DEVS Models

 19

Ramp

As we shall see later, DEVS can model systems whose discrete event nature is
not immediately apparent. Consider a billiard ball. As illustrated in Figure 7,
struck by a cue (external event), it heads off in a direction at constant speed
determined by the impulsive force imparted to it by the strike. Hitting the
side of the table is considered as another input that sets the ball off going in a
well-defined direction.

x0 x1in

s

out

Figure 7 Ramp trajectories

The model is described by:
public class ramp extends siso{
protected double step_time;
protected double position,inp;

public ramp(String name){
super(name);
phases.add("active");
step_time = 10;
}

public void initialize(){
 holdIn("active",step_time);
 inp = 0;
 position = 0;
 super.initialize();
 }

public void Deltext(double e,double input)
{
 Continue(e);
 position = position + e*inp;

Chapter 2

 20

 inp = input;
}

public void deltint()
{
position = position + sigma*inp;
sigma = step_time;
}

public double Out()
{
double nextposition = position + sigma*inp;
return nextposition;
}
}

The model stores its input and uses it as the value of the slope to compute
the position of the ball (in a one-dimensional simplification). It outputs the
current position every step_time. If it receives a new slope in the middle of a
period, it updates the position to a value determined by the slope and elapsed
time. Note that it outputs the position prevailing at the time of the output.
This must be computed in the output function since it always called before the
next internal event actually occurs. Note that we do not allow the output
function to make this update permanent (using the temporary variable
nextposition – which could also be absorbed directly into the return
statement). The reason is that the output function is not allowed to change
the state in the DEVS formalism.

Warning. A model in the output function changes the state of a model may
produce unexpected and hard-to-locate errors because DEVS simulators
do not guarantee correctness for models that do not conform to the given
specification.

Summary

Working with a restricted version of DEVS allowed us to present some of the
basic ideas underlying the construction of DEVS basic models. Although we
used DEVSJAVA code to implement the model examples, we did so without
describing the basic class structure that underlies this code. The next chapter
will present this structure and show how the class siso is derived from it.

Exercises

Exercise 1: An nCounter generalizes the binary counter by generating a
“one” for every n “one”s it receives. Specify an nCounter as a siso model in
DEVS.

Exercise 2: Define a DEVS counter that counts the number of non-zero input
events received since initialization and outputs this number when queried by
a zero valued input.

Exercise 3:

Part a) Express in pseudo-code the one-dimensional ramp discussed in this
chapter.

Working with DEVS Models

 21

Part a) Implement the ramp model in DEVSJAVA, simulate it, and verify that
its behavior is correct.

Exercise 4: For the billiard example, consider the more realistic situation
where the position of the billiard ball is represented in a two dimensional
space. For this revised system,

Part a) Develop its pseudo-code.

Part b) Write its DEVS specification.

Part c) Identify its appropriate input streams that allow the essential modes of
behavior to be observed.

Part d) Implement the billiard ball model in DEVSJAVA.

Part e) Exercise the simulation model developed in (d) using the input
streams identified in (c).

Solutions

Exercise 3:

Part (a): Pseudo-code description for a one dimensional ramp

 in RampV0 out

 sigma, phase, position, slope

Primary States:

 phases: active
 sigma: any positive number

Secondary States:

 position: any real number (e.g. –9.1, 0.0)
 slope: any real number

Parameter:

 stepTime: any positive number greater than zero

Initialization:

Chapter 2

 22

 phase = active
 sigma = any finite real number

External Transition Function:

When receive a new slope on input port “in”
position = position + (e * slope) //update position according to e using the
old slope
 slope = newSlope // update the slope
 sigma = sigma - e
else //invalid input port names
 error

Internal Transition Function:

 position = position + (sigma * slope) //update position according
to sigma
 set sigma to stepTime //equivalent to hold-
in(“active”, stepTime)

Output Function:

 send position + (sigma * slope) to output port “out” //
output the most up-to-date position

Exercise 4:

Part (a): Pseudo-code for a two dimensional ramp (billiard ball
displacement in XY plane)

Assumptions:

In addition to the assumptions from the one-dimensional ramp, we assume
the boundary of the pool table is identified once an external input is received.
The input values arriving at the inport “in” can be considered to be a of type
pair. Each input value pair has two components: magnitude ()v and angle

()θ where the angle is w.r.t. the horizontal x-axis

() ()(),x yV Vcos V Vsinθ θ= =

Similarly, output in the form of a pair positions (i.e., (,)Xpos Ypos) in the XY
plane are available via the outport “out”.

Working with DEVS Models

 23

 Two Dimensional Ramp
 in out

 sigma, phase,Xpos, Ypos, Vx, Vy

Part (b): pseudo-code for a two dimensional ramp (billiard ball)

Primary States:

 phases: active
 sigma: any positive number

Secondary States:

 Xpos: any real number
 Ypos: any real number
Vx: any real number
 Vy: any real number

Parameter:

 stepTime: any positive number greater than zero

Initialization:

 Xpos = any finite real number
 Ypos = any finite real number
 Vx = any finite real number
 Vy = any finite real number

External Transition Function:

 when receive entity v on input port “in”
 Xpos = Xpos + (e*Vx) //update position according to e
using the old slope
 Ypos = Ypos + (e*Vy)
 Vx = v.V * cos(v.θ) // update the slope
 Vy = v.V * sin(v.θ)
 phase = active

Chapter 2

 24

 sigma = sigma – e
else //invalid input port names
 error

Internal Transition Function:

 Xpos = Xpos + (sigma*Vx)
 Ypos = Ypos + (sigma*Vy)
 hold-in active for stepTime

Output Function:

 send Xpos = Xpos + (sigma*Vx) and Ypos = Ypos + (sigma*Vy)
 as a value pair v = (Xpos, Ypos) to output port “out”

b) DEVS Specification

 , , , , , ,int extDEVS X S Y taδ δ λ= 〈 〉 where

// Dot notation is employed to obtain velocity ()v and angle ()θ for any

given input v (i.e., .vV and .vθ)

{" "}InPorts in ,=

 {(,) | , }X p v p InPorts v pair= ∈ ∈ is the set of input port and value
pairs,

 and {(,) | , 0 360 }v V Vθ ℜ θ= ∈ ≤ ≤o o

{" "}OutPorts out ,=

 {(,) | , }pY p v p OutPorts v Y= ∈ ∈ is the set of output port and value

pairs,

and {(,) | , };v Xpos Ypos Xpos Yposℜ ℜ= ∈ ∈

 0{" "," "}S passive active × ℜ × ℜ × ℜ × ℜ × ℜ+=

()(), , , , , , , ,ext phase Vx Vy Xpos Ypos e p vδ σ =

() ()()" ", , . * . , . * . , * , * ;active e vV cos v vV sin v Xpos e Vx Ypos e Vyσ θ θ− + +

Working with DEVS Models

 25

(, , , , ,)ext phase Vx Vy Xpos Yposδ σ =

 (" ", , , , * , *);active stepTime Vx Vy Xpos Vx Ypos Vyσ σ+ +

(, , , , ,)phase Vx Vy Xpos Yposλ σ =

 ()" ",out v where, . *v Xpos Xpos Vxσ= + and . * ;vYpos Ypos Vyσ= +

(), , , , .ta phase Vx Vy Xpos Yposσ σ< =

Part (c): Input streams

Input events arriving with some non-zero inter-arrival time between them.
The values of input events are:

Velocity (i.e., any real number) with 0 360θ≤ ≤o o with the following special
cases:

Velocity (i.e., non-zero) in the X direction (i.e., 0θ = o or 180o)

Velocity (i.e., non-zero) in the Y direction (i.e., 90θ = o or 270o)

Chapter 3

DEVSJAVA CLASSES AND METHODS

Before going further, we will briefly discuss the implementation of DEVS in
Java. A more complete description of the implementation is in the DEVSJAVA
reference guide available from the web site www.acims.arizona.edu under
Software. You will need to know the basic class hierarchy and methods to be
able to write DEVS models in DEVSJAVA. We’ll close this chapter with a
discussion of the implementation of the siso class, which will give you a little
more insight into how both the generic devs classes and the siso class work.

Container Classes

DEVSJAVA employs two packages to implement the DEVS concepts. Container
classes, used to hold instances of objects, are implemented in the Package
Zcontainer. The inheritance hierarchy of container classes is shown in Figure
1. The classes are roughly characterized as follows:

q entity - the base class for all classes of objects to be put into
containers

q pair - holds a pair of entities called key and value

q container - the base class for container classes, provides basic services
for the derived classes

q bag - counts numbers of object occurrences

q set - only one occurrence of any object is allowed in.

q relation - is a set of key-value pairs, used in dictionary fashion

q function - is a relation in which only one occurrence of any key
allowed

q order - maintains items in given order

q queue - maintains items in first-in/first-out (FIFO) order

q stack - maintains items in last-in/first-out (LIFO) order

q list - maintains items in order determined by an insertion index

DEVSJava Classes & Methods

 27

bag

function

set

relation

add(entity)

remove(entity1,entity2)

assoc(entity) -> entity

assoc_all(entity)->set

replace(entity1,entity2)

entity

add(entity1,entity2)

is_in(entity) -> boolean

container

add(entity)
get_length()-> int

listqueue stack

insert(entity,int)

list_ref(int)
remove(int)

front()->entity

order

top()->entity

pop [=remove]

push [=add]

greater_than(entity)-> boolean

get_max -> entity

pair

get_key()->entity
get_value()->entity

container()

remove(entity)
number_of(entity) -> int

bag()

set()

relation()

function()

remove(entity)

get_name() -> String
equal(entity) -> boolean

entity(String)

eq(String) -> boolean

pair(entity1,entity2)

add(entity)
order()

remove()

queue() stack()
list()

Figure 8 Class hierarchy of container classes

DEVS Classes

The DEVS system, proper, is implemented in a package called Zdevs as a
layer over the Zcontainer package. The inheritance hierarchy illustrated
(somewhat simplified) in Figure 9. Atomic and coupled are the main derived
classes of devs, the base class of the DEVS sub-hierarchy. Class digraph is a
main subclass of class coupled which has a query, get_component(). This returns
the components as a Zcontainer set that contains devs instances. Such
instances may be either from either atomic or recursively, digraph classes.
Typically, in developing an application, you derive classes from these basic
classes. Of course, instances of such user-defined classes can also be
components. Since components of a digraph may themselves by digraph
instances, the implementation supports the fundamental concept of DEVS −
hierarchical construction.

Class message is derived from the Zcontainer class, bag. Messages are passed
among components in a coupled model. A message holds instances of class
content; with slots for port, p, and val. The latter carries an entity instance
transmitted from sender to receiver. Such a value can be an instance of any
derived class of entity whether defined by the system or the user. Since
derived classes of devs are included , we have the remarkable consequence
that model components may also be transmitted from one component to
another!

Chapter 3

 28

devs

entity

atomic

Legend

inherits

can hold

container message

content

content

atomic(String)

message()

p->String
val->entity

make_content(String,entity)->content
message_on_port(message,String,int)->entity
deltext(int,message)
deltint()
delcon(int,message)
 out()->message
ta()->int

digraph devs

 get_components()->set
 add(devs)
digraph(String)

entity

entity

coupled

get_val_on_port(String,int);

Figure 9 DEVSJAVA Class hierarchy and main methods

Let’s take a brief look at some of the main features of interest to you, as
model builder, in the Zdevs Package.

Warning: Code fragments and class hierarchies presented in this book are
simplified to ease initial understanding. They should not be employed in any
other context, such as code development or debugging. Please refer to the
JavaDoc documentation for authentic class and method representation.

Class devs

Class devs, the base class for the two main model classes atomic and coupled,
is condensed in the following:

public class devs extends entity {

protected double tL, tN;
public final double INFINITY = Double.POSITIVE_INFINITY;

public devs(String name){
super(name);
…
}

public void initialize(){
tL = 0;
tN = tL + ta();
output = null;

DEVSJava Classes & Methods

 29

}

public void inject(String p, entity val, double e){
message in = new message();
content co = makeContent(p, val);
in.add(co);
}

public content makeContent(String p, entity value){
return new content(p,value);
}

public boolean messageOnPort(message x, String p, int i){
if (!inports.is_in_name(p))
System.out.println("Warning: model :" + name + " inport: " + p +
" has not been declared");
return x.on_port(p, i);
}
}

Class message
Class message is derived from class bag and holds instances of class content,
with slots for port, p, and value, val (an entity).

public class message extends bag{

public message(){
 super();
}

public content read(int i)
{
// returns the i’th content in the message
}

public boolean on_port(String portName, int i)
{
 content con = read(i);
 return portName.equals(con.p);

}

public entity getValOnPort(String portName, int i)
{
 if (on_port(portName,i)) {
 return read(i).val;
 }
 return null;
}
}

Chapter 3

 30

Class atomic
Class atomic realizes the atomic level of the underlying DEVS formalism. It has
elements corresponding to each of the parts of this formalism. For example, it
has methods for a model's internal transition function, external transition
function, output function, and time-advance function, respectively. These
methods are applied to the instance variables, which characterize the state of
the model.

public class atomic extends devs {

public atomic(String name){
 super(name);
 phases = new set();
 lastOutput = new message();
 addInport("in");
 addOutport("out");
 phases.add("passive");
 passivate();
}

public void passivate(){
 phase = "passive";
 sigma = INFINITY;
}

public void holdIn(String p, double s){
 phase = p;
 sigma = s;
}

public void passivateIn(String phase){
 holdIn(phase, INFINITY);
}

public boolean phaseIs(String Phase){
 if(!(phases.is_in_name(Phase))) {
 System.out.println("Warning: model: " + getName() + " phase:
"
 + Phase + " has not been declared");
 }
 return phase.equals(Phase);
}

public void deltint(){}

public void deltext(double e, message x){}

public void deltcon(double e, message x){

 //external transition followed by internal transition
 //deltext(e, x);
 //deltint();

 //internal transition followed by external transition
 deltint();
 deltext(0, x);
}
}

DEVSJava Classes & Methods

 31

Class coupled
Coupled is the major class, which embodies the hierarchical model
composition constructs of the DEVS formalism. A coupled model is defined by
specifying its component models. Components are instances of the devs class
(hence, instances of coupled are allowed) thus enabling hierarchical
composition.

public class coupled extends devs{

 set components;

public coupled(String nm){
 super(nm);
 components = new set();
 set_parent(null);
 }

 public void add(devs b){
 components.add(b);
 b.set_parent(this);
 }

 public set getComponents(){
 return components;
 }
}

Class digraph
Class digraph is a derived class of coupled which enables you to define a
coupled model in an explicit manner. In addition to components, it enables
you to specify the coupling relation, which establishes the desired
communication links among the components (internal coupling) and between
them and the external world (external input and external output coupling).

public class digraph extends coupled{

 couprel Coupling;

public digraph(String nm){
 super(nm);
 Coupling = new couprel();
 addInport("in");
 addOutport("out");
}

public void AddCoupling(devs d1, String p1, devs d2, String p2){
port por1 = new port(p1);
port por2 = new port(p2);
Coupling.ADD(d1, por1, d2, por2);
}
}

Chapter 3

 32

Implementing the Single Input/Single Output DEVS

The expressive power of DEVSJAVA enables atomic models to handle arbitrary
simultaneous arrival of arbitrary values on arbitrary ports. This power can be
cut down to enable only one input at a time (as in Classic DEVS) and even
further, one number at a time. Why would we do so? The resulting classes
are much easier to work with for novices without much object-oriented
programming experience. Further, the definitions of the new classes are
instructive in the underlying object-oriented approach taken in DEVSJAVA
implementation. The classes, classic and siso, are in inheritance order in Figure
10.

atomic

classic

siso

Figure 10 Derived classes classic and siso

Classic introduces a new external transition function Deltext to restrict the
deltext method inherited from atomic to inputs containing a single content
only. Siso then further restricts Deltext so that it expects single number
inputs.

Class classic

public class classic extends atomic{

public classic(String name){
 super(name);
}

public content get_content(message x){
 entity ent = x.get_head().get_ent();
 return (content)ent;
}

public void Deltext(double e,content con){
} //virtual for single input at a time

public void deltext(double e,message x)
{
//deltext, as invoked by the simulator, calls Deltext (as defined
by the modeler)

DEVSJava Classes & Methods

 33

Deltext(e,get_content(x));
}
}

Class siso

public class siso extends classic{

public siso(){
AddTestPortValue(0);
}

public siso(String name){
 super(name);
}

public void Deltext(double e,double input){
//expects single real value
//this signature for Deltext is invoked by the one expected by
classic (following next)
}
public void Deltext(double e,content con){
 doubleEnt de = (doubleEnt)con.val;
 Deltext(e,de.getv());
}

public double Out(){
 return 0; //produces single real value
}

public message out()
{
 message m = new message();
 content con = makeContent("out",new doubleEnt(Out()));
 m.add(con);
 return m;
}
}

Chapter 4

PARALLEL DEVS MODELS IN DEVSJAVA

Having discussed the basic classic hierarchy of DEVSJAVA we now are ready
to start writing full-fledged models in its underlying formalism. Parallel DEVS
differs from Classical DEVS in allowing all imminent components to be
activated and to send their output to other components. The receiver is
responsible for examining this input and properly interpreting it. Messages,
basically lists of port - value pairs, are the basic exchange medium. This
chapter discusses Parallel DEVS, and gives a variety of examples to contrast it
with Classical DEVS.

Parallel DEVS Basic Models

A basic Parallel DEVS is a structure

(), , , , , ,M M ext int conDEVS X Y S taδ ,δ δ λ=

where

{(,) | , }MX p v p IPorts v Xp= ∈ ∈ is the set of input ports and values;

{(,) | , }MY p v p OPorts v Yp= ∈ ∈ is the set of output ports and values;

S is the set of sequential states;

: b
con MQ X Sδ × → is the external state transition function;

int : S Sδ → is the internal state transition function;

: b
con MQ X Sδ × → is the confluent transition function;

: bS Yλ → is the output function;

0:ta S R+→ ∪ ∞ is the time advance function;

With : {(,) | ,0 ()}Q s e s S e ta s= ∈ ≤ ≤ the set of total states.

Parallel DEVS Coupled Models

 35

We point out the important capabilities of Parallel DEVS beyond the classical
DEVS formalism we presented earlier:

q Ports are represented explicitly – there can be any of input and output
ports on which values can be received and sent

q Instead of receiving a single input or sending a single output, basic
parallel DEVS models can handle bags of inputs and outputs. Recall
that a bag can contain many elements with possibly multiple
occurrences of its elements.

q We’ve added a transition function, called confluent. It decides the next
state in cases of collision between external and internal events. We
have seen examples of such collisions earlier in examining classical
DEVS.

Examples: Processor Models

Basic models are implemented as atomic models in DEVSJAVA. The following
table outlines a series of atomic models for work processing to be presented
in this section.

Atomic model I/O Behavior Description

processor simple processor representing only storage of job and
passage of time for its execution; no buffering or
preemption

processor with

queue

processor with FIFO (First In/First Out) queue selects
next job based on earliest arrival time

processor with

priority queue

processor with queue selects next job based on its
priority and can be interrupted by higher priority job;
requires user defined class job; priority is based on
processing time

Pseudo-code Example: Simple Processor

A model of a simple workflow situation is obtained by connecting a generator
to a processor. The generator outputs are considered to be jobs to do and the
processor takes some time to do them. In the simplest case, no real work is
performed on the jobs; only the times taken to do them are represented. We
start with a simple processor. Basically, we represent only the time it takes to
complete a job (e.g., solve a problem) not the detailed manner in which such
processing is done. Expressed in the pseudo-code illustrated in Figure 11, it
takes the form of an atomic model called P. The behavior of the processor is
as follows. If P is idle, i.e., in phase “passive”, when a job arrives on the input
port 'in, it stores the job-id (a distinct name for the job) and goes to work.
This is achieved by the phrase “hold-in busy processing-time", which sets the
phase to 'busy and sigma (the time-left state variable) to processing-time.
Such handling of incoming jobs is represented in the external transition

Chapter 4

 36

function. Since this processor has no buffering capability, when a job arrives
while the processor is busy it simply ignores it. This is achieved by the
“continue” phrase, which updates sigma to reflect the passage of elapsed
time, but otherwise leaves the state unchanged. When the processor has
finished processing, it places the job identity on port 'out and returns to the
“passive” phase. Sending of the job is done by the output function, which is
called just before the state transition function. The latter contains the phrase
“passivate" which returns the model to the idle state in which the phase is
“passive” and sigma is INFINITY.

 Note that P has two state variables, job-id and processing-time, in
addition to the standard ones, namely sigma and phase. Since processing-
time, once initialized, does not change during the run, it is actually a
parameter (fixed characteristic) of the model. Simple as this processor is, we
can combine it with other components to create models of computer
architectures that provide some insight into their performance. The basic
model can also be refined to represent more complex aspects of computer
operation, as we shall see later.

 Figure 11 Simple processor atomic model

Pseudocode for simple processor:

ATOMIC MODEL: P

State variables:

 sigma = inf
 phases = passive
 job-dI = 0

Parameter:

 Processing-time = 5

External Transition Function:

Parallel DEVS Coupled Models

 37

case input-port
in: case phase
passive : store job-id
 hold-in busy processing-time
 busy: continue
else error

Internal Transition Function:

case phase
 busy : passive
 passive (does not arise)

Output Function:

 send job-id to port out

 Figure 12 Trajectory for simple processor.

Chapter 4

 38

Simple Processor Expressed in Parallel DEVS

The simple processor is defined in Parallel DEVS as follows:

 (), , , , , , ,M M ext int conDEVS X Y S taδ δ δ λ=

where

{" "}IPorts in= , where Xin J= (a set of job identifies),

{(,) | , }MX p v p IPorts v Xp= ∈ ∈ is the set of input ports and values;

{" "}OPorts out= , where Yout J= .

{(,) | , }MY p v p OPorts v Yp= ∈ ∈ is the set of output ports and values;

0{" "," "}S passive busy R J× ×+=

() () ()()(), , , , " ", , " ", ,...., " ",ext phase j e in j1 in j2 in jnδ σ =

 ()" ", sin _ ,busy proces g time jn if phase = “passive”

(), ,phase e jσ − otherwise

(), , .int phase j qδ σ =

()" ", ,busy q∞ if q = Λ

()" ", sin _ , .passive proces g time j q otherwise

()() ()(), , , ,con ext intS ta s x s O xδ δ δ=

()" ", , .busy j q jλ σ =

(), ,ta phase jσ σ=

Implementing the Simple Processor in DEVSJAVA

To explain how the simple processor model is coded in DEVSJAVA, we’ll note
that there are two essential state variables that are inherited from class
atomic:

Parallel DEVS Coupled Models

 39

q Phase is a control state that is almost always used in models to help
keep track of where the full state is;

q Sigma holds the time remaining to the next internal event. This is
precisely the time-advance value to be produced by the time-advance
function.

The simple process class proc is defined as follows:

Chapter 4

 40

2 Class atomGraph is used in the SimpArc version to give
additional graphics capability

public class proc extends atomic{2

 protected entity job;
 protected double processing_time;

public proc(String name,double Processing_time){
super(name);
addInport("in");
addOutport("out");
phases.add("busy");
processing_time = Processing_time;
}

public void initialize(){
 phase = "passive";
 sigma = INFINITY;
 job = new entity("job");
 super.initialize();
 }

public void deltext(double e,message x)
{
Continue(e);

if (phaseIs("passive"))
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"in",i))
 {
 job = x.getValOnPort("in",i);
 holdIn("busy",processing_time);
 }
}

public void deltint()
{
passivate();
job = new entity("none");
}

public void deltcon(double e,message x)
{
 deltint();
 deltext(0,x);
}

public message out()
{
message m = new message();
if (phaseIs("busy")) {
m.add(makeContent("out",job));
}
return m;
}

Parallel DEVS Coupled Models

 41

Let’s examine the model representation in more detail:

The declarations

protected entity job;
protected double processing_time;

define instance variables, store and processing_time; store will be a state
variable which changes during a simulation run, while processing_time is a
parameter since it does not change during a run in this model.

The constructor declares the ports and provides values for the parameters:

public proc(String name,double Processing_time){
super(name);
addInport("in");
addOutport("out");
phases.add("busy");
processing_time = Processing_time;
}

The initialize method provides initial values for all state variables. Note that
in particular sigma and phase must be initialized. When sigma has the
value INFINITY, this indicates that the model will not have an internal
transition unless an external transition occurs.

public void initialize(){
 phase = "passive";
 sigma = INFINITY;
 job = new entity("job");
 super.initialize();
 }

The super class (from which proc is derived) is atomic so super.initialize is
atomic’s initialize method. Among other things, this initializes the time of last
event, tL and time of next event, tN as shown next:

public void initialize() //for atomic
{
 tL = 0;
 tN = tL + ta();
}

The external transition function is given by:

public void deltext(double e, message x)
{
Continue(e);

if (phaseIs("passive"))
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"in",i))
 {
 job = x.getValOnPort("in",i);
 holdIn("busy",processing_time);
 }
}

Chapter 4

 42

The internal transition function is given by:

public void deltint(){
 passivate();
}

This states that the model will passivate (set sigma to INFINITY) after
spending the time required in “busy. ”

The confluent transition function is given by:

public void deltcon(double e,message x){
 deltint();
 deltext(0,x);
 }

This is the default definition provided by the atomic class so could have been
inherited without redefinition. We repeat it here to prepare the way for the
discussion of collisions in the next chapter.

The output function is given by:

public message out()
{
message m = new message();
if (phaseIs("busy")) {
m.add(makeContent("out",job));
}
return m;
}

This function first check if the phase equals “busy”; if so, an output on port
“out” will be generated, otherwise a null message will be generated.

Another Example: Adding a Buffer to the Simple Processor

A processor that has a buffer is defined in Parallel DEVS as follows:

(), , , , , , ,processing_time M M ext int conDEVS X Y S taδ δ δ λ=

where

{" "}InPorts in= , where Xin V= (an arbitrary set),

{(,) | , }MX p v p IPorts v Xp= ∈ ∈ is the set of input ports and values;

{" "}OPorts out= , where Yout V= (an arbitrary set),

{(,) | , }MY p v p OPorts v Yp= ∈ ∈ is the set of output ports and values;

Parallel DEVS Coupled Models

 43

0{" "," "}S passive busy R V× ×+ +=

() () ()()(), , , , " ", , " ", ,...., " ",ext phase q e in x1 in x2 in xnδ σ =

()" ", , , 2,....,busy processing_time x1 x xn if phase = “passive”

(), , . , 2,....,phase e q x1 x xnσ − otherwise

(), , .int phase v qδ σ =

()" ", ,busy q∞ if q = Λ

()" ", , .passive processing_time v q else

()() ()(), , , ,con ext intS ta s x s O xδ δ δ=

()" ", , .busy v q vλ σ =

(), ,ta phase qσ σ=

Using its buffer the processor can store jobs that arrive while it is busy. The
buffer, also called a queue, is represented by a sequence of jobs, x1…xn in

V+ (the set of finite sequences of elements of V where Λ denotes the empty
sequence). Jobs are processed in the order of arrival − i.e., first in first out
(FIFO) order. In parallel DEVS, the processor can also handle jobs that arrive
simultaneously on in its input port. These are placed in its queue and it starts
working on the one it has selected to be first. Note that bags, like sets, are
not ordered so there is no ordering of the jobs in the input bag. For
convenience we have shown the job, which is first in the written order in δext
as the one selected as the one to be processed. Figure 13 ustrates the
concurrent arrival of two jobs and the subsequent arrival of a third just as the
first job is about to be finished. Note that the confluent function, δcon
specifies that the internal transition function is to be applied first. Thus, the
job in process completes and exists. Then the external function adds the third
job to the end of the queue and starts working on the second job. Classic
DEVS has a hard time doing all this as easily!

Chapter 4

 44

j1,j2
queue

j1

processing_time

j3j1,j2

j1,j2,j3
j2,j3

j2 j3

j3j1

Figure 13 Parallel DEVS process with buffer

public class procQ extends proc{
 protected queue q;

 public procQ(String name, double Processing_time){
 super(name, Processing_time);
 q = new queue();
}

 public void initialize(){
 q = new queue();
 super.initialize();
 }

 public void deltext(double e, message x){
 Continue(e);
 if (phaseIs("passive")){
 for (int i=0; i< x.getLength(); i++)
 if (messageOnPort(x, "in", i)){
 job = x.getValOnPort("in", i);
 holdIn("busy", processing_time);
 q.add(job);
 }

 job = q.front(); // this makes sure the processed job is the
one at
 //the front
 }

 else if (phaseIs("busy")){
 for (int i=0; i< x.getLength();i++)

Parallel DEVS Coupled Models

 45

 if (messageOnPort(x, "in", i))
 {
 entity jb = x.getValOnPort("in", i);
 q.add(jb);
 }
 }
}

public void deltint(){
q.remove();
if(!q.empty()){
 job = q.front();
 holdIn("busy", processing_time);
}
else passivate();
}

// public message output(){inherited from proc}
}

Discrete-event simulation is often associated with simulation of queuing
models and one might imagine that queuing is an inevitable factor in any such
model. However, as new approaches to manufacturing such as just-in-time
production have shown, queues are evidence of inadequate process co-
ordination and impose a costly overhead that often can be avoided. In the
models to be discussed in this book, we intentional ly do not incorporate
queues, in favor of more sophisticated co-ordination schemes. The reader
may wish to compare performance of the models in the ensuing chapters
with, and without, queues. Modularity, and model base concepts, facilitates
exploration of such alternatives.

Processor with Random Processing Times

The processor models discussed so far can be made more realistic in a variety
of ways. Often the processing time in such a model is not constant but is
sampled from a probability distribution probability distribution. This is easy to
arrange in DEVSJAVA by modifying the external transition function.
Distributions such as the exponential or normal may be used as explained in
many books on discrete-event simulation.

holdIn("busy", exponential(100, 2);

(See section “Generator of Time Consuming Jobs” for details on the use of
random number generators and probability distributions in DEVSJAVA.)

Chapter 4

 46

Processor Priority Queue

public class job extends entity{
 public double processing_time;

public job(String name, double Processing_time){
 super(name);
 processing_time = Processing_time;
}

public boolean greater_than(entity m){
 job jm = (job)m;
 return processing_time < jm.processing_time;
 //choose on basis of smaller time left
}

public void update(double e){
 processing_time = processing_time - e;
}
}

Parallel DEVS Coupled Models

 47

public class priorityQ extends proc{

 protected job jb;
 protected order q;

public void initialize(){
q = new order();
jb = new job("nullJob");
super.initialize();
}

public void deltext(int e,message x)
{
Continue(e);
if (phaseIs("passive"))
{
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"in",i))
 {
 entity ent = x.getValOnPort("in",i);
 q.add(ent);
 }

 entity ent = q.get_max();
 jb = (job)ent;
 holdIn("busy",jb.processing_time);
}
else if (phaseIs("busy"))
{
jb.update(e); //update current job

 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"in",i))
 {
 entity ent = x.getValOnPort("in",i);
 q.add(ent);
 }
entity ent = q.get_max();
 job max = (job)ent;
 if (jb != max){
 jb = max;
 holdIn("busy",jb.processing_time);
}
}
}

public void deltint()
{
q.remove();
if(!q.empty()){
 jb = (job)q.get_max();
 holdIn("busy",jb.processing_time);
}
else passivate();
}

public message out()
{
message m = new message();
if (phaseIs("busy")){
content con = makeContent("out",jb);
m.add(con);
}
return m;
}
}

Chapter 4

 48

Models with Multiple Input and Output Ports

Modeling is made easier with the introduction of input and output ports. For
example, a DEVS model of a storage naturally has two input ports, one for
storing and the other for retrieving. We’ll now present a few examples to
illustrate the use of ports.

DEVS Model of a Switch

A switch is modeled as a DEVS with pairs of input and output ports, as shown
in Figure 14. When the switch is in the standard position, jobs arriving on port
“in” are sent out on port “out”, and similarly for ports “in1” and “out1”. When
the switch is in its other setting, the input-to-output links are reversed, so
that what goes in on port “in” exits at port “out1”, etc.

in out

Switch
in1 out1

 Figure 14 Switch with input and output ports

In the switch DEVS below, in addition to the standard phase and σ variables,
there are state variables for storing the input port of the external event, the
input value, and the polarity of the switch. In this simple model, the polarity
is toggled between true and false at each input.

(), , , , , ,ext intDEVS X Y S taδ δ λ=

where

 {" "," "}InPorts in in1= , where Xin Xin1 V= = (an arbitrary set),

Parallel DEVS Coupled Models

 49

 {(,) | , }X p v p IPorts v Xp= ∈ ∈ is the set of input ports and values;

 {" "," "}OPorts out out1= , where Yout Yout1 V= = (an arbitrary set),

 {(,) | , }Y p v p OPorts v Yp= ∈ ∈ is the set of output ports and values;

0{" "," "} { , } { , }S passive busy R in in1 V true false× × × ×+=

() ()(), , , , , , , ,...., ,ext phase inport store Sw e p1 v1 pn vnδ σ =

()" ", , , ,busy processing_time p1 v1 !Sw if phase = “passive” and

{ , }p in in1∈

(), , , ,phase e inport store Swσ − otherwise

() (), , , , " ", , , ,int phase inport store Sw passive inport store Swδ σ = ∞

(), , , ,phase inport store Swλ σ =

(),out store if " "phase busy= andSw true= and inport in=

(),out1 store if " "phase busy= andSw true= and inport in1=

(),out1 store if " "phase busy= andSw false= and inport in=

(),out store if " "phase busy= and Sw false= and inport in1=

 (), , , ,ta phase inport store Swσ σ=

DEVSJAVA Implementation of the Switch

The implementation of the switch in DEVSJAVA is presented as follows:

Chapter 4

 50

public class Switch extends atomic{//switch is reserved word
protected entity job;
protected double processing_time;
protected boolean sw;
protected String input;

public Switch(String name, double Processing_time){
super(name);
addInport("in1");
addOutport("out1");
phases.add("busy");
processing_time = Processing_time;
}

public void initialize(){
 phase = "passive";
 sigma = INFINITY;
 job = new entity("job");
 sw = false;
 input = new String("in");
 super.initialize();
}

public void deltext(double e, content con){
 Continue(e);

if (phaseIs("passive")){
 for (int i=0; i< x.getLength(); i++)
 if (messageOnPort(x, "in", i)){
 job = x.getValOnPort("in", i);
 input = "in";
 holdIn("busy", processing_time);
 }

 for (int i=0; i< x.getLength(); i++)
 if (messageOnPort(x, "in1", i)){
 job = x.getValOnPort("in1", i);
 input = "in1";
 holdIn("busy", processing_time);
 }
 sw = !sw;
}

public void deltint(){
passivate();
}

public message out(){
message m = new message();
if (phaseIs("busy")){
content con;
if (!sw && input.equals("in"))
 con = makeContent("out", job);
else if (!sw && input.equals("in1"))
 con = makeContent("out1", job);
else if (sw && input.equals("in"))
 con = makeContent("out1", job);
else //if (sw && input.equals("in1"))
 con = makeContent("out", job);
m.add(con);
}
return m;}}

Parallel DEVS Coupled Models

 51

Sending/Receiving/Interpreting Messages

inout
c1c0

coupled model

coupling: (c0,”out”,c1,”in”)

float float

entity

floatEnt
floatEnt(float)
getv() -> float

f loat

f loa tEnt va l

p

con ten t
m e s s a g e

“ou t”

make_conten t (“ou t” ,new f loa tEnt (v))

v

a d d

Figure 15 Sending an entity

To send a floating point value on port “out”:

public message out(){
float store = 5.5;

Chapter 4

 52

message m = new message();
content con = makeContent("out", new floatEnt(store));
m.add(con);
return m;
}

floatEnt

val

p

content

message

 if (message_on_port(x,"in",i))

float
v

x.get_val_on_port("in",i);

“in”

x cast

getv

Figure 16 Receiving an entity

To extract the value at the receiving end on port “in”:

public void deltext(double e, message x){

for (int i=0; i< x.getLength(); i++)
if (messageOnPort(x, "in", i)){
entity val = x.getValOnPort("in", i);
floatEnt f = (floatEnt)val;
float store = f.getv();
…

Clearly for the receiver to properly interpret the sender’s entity there must be
a prior understanding on what kind of entity this is. We’ll consider this issue
in detail when we discuss coupled models in Chapter 6 and constraints on
coupling as they are realized in DEVSJAVA in Chapter 8.

Parallel DEVS Coupled Models

 53

More Atomic Models in DEVSJAVA

Atomic model I/O Behavior Description

storage storage with separate ports for store and query inputs;

also resolves collision between input and transition

processor
w/(name,job)

processor with two input ports: one for jobs and one for
(name,job) pairs, processing the job only if it is the
designated processor

eventList (or
delay)

holds arriving inputs for a computable delay

stop/start
generator

generator which includes stop/start ports; “stop” takes
effect after the in process transition;

transducer keeps track of arrivals and departures so that
turnaround time and throughput can be determined

Storage with Ports for storing and retrieval

x1

respond

x1

query
x2x1

x2

public class storageP extends atomic{
protected float store;

Chapter 4

 54

protected double response_time;

public storageP(String name, double Response_time){
 super(name);
 addInport("query");
 phases.add("respond”);
 response_time = Response_time;
}

public void initialize(){
 phase = “passive”";
 sigma = INFINITY;
 store = 0;
 response_time = 500;
 super.initialize();
 }

public void deltext(double e, message x){
 Continue(e);
 if (phaseIs(“passive”")){
 for (int i=0; i< x.getLength(); i++)
 if (messageOnPort(x,"in",i)){
 entity val = x.getValOnPort("in", i);
 floatEnt f = (floatEnt)val;
 store = f.getv();
 }
 for (int i=0; i< x.getLength(); i++)
 if (messageOnPort(x, "query", i))
 holdIn("respond", response_time);
 }
 }

public void deltint(){
 passivate();
}

public void deltcon(double e, message x){ //inherit from atomic
 deltint();
 deltext(0,x);
}

public message out(){
message m = new message();
if (phaseIs("respond")){
content con = makeContent("out", new floatEnt(store));
m.add(con);

return m;
}}

Processor with (name, job) Input and Output Ports

public class procName extends proc{

 //much of the proc definition is inherited

public void deltext(double e,message x)
{
Continue(e);

Parallel DEVS Coupled Models

 55

 for (int i=0; i< x.getLength();i++)
if (messageOnPort(x,"inName",i))
 {
 entity ent = x.getValOnPort("inName",i);
 pair pr = (pair)ent;
 entity en = pr.getKey();

 if (this.eq(en)) // eq checks equality of names
 {
 job = pr.getValue();
 holdIn("busy",processing_time);
 }
 }
}

public message out()
{
message m = new message();
if (phaseIs("busy")) {
con = makeContent("outName",new pair(name,job));
m.add(con);
}
return m;
}
}

Event List (Delay) Element
public class eventList extends atomic{
protected relation arrived;
protected set due;
protected double clock, dely;
public eventList(String name, double Dely){
 super(name);
 addInport("in");
 addInport("stop");
 addOutport("out"); phases.add("active");
 arrived = new relation();
 due = new set();
 dely = Dely;
}

Chapter 4

 56

public void initialize(){
 phase = "passive";
 sigma = INFINITY;
 clock = 0;
 super.initialize();
 arrived = new relation();
 due = new set();
}

private int minimum(){
double min = INFINITY;
for (pair p = ((pair)(arrived.get_head())); p != null;
p=(pair)p.get_right()){
 entity ent = p.getKey();
 double time = ((intEnt)ent).getv();
 if (time < min) min = time;
}
return min;
 }
 }

public void deltext(double e, message x){
 clock = clock + e;
 Continue(e);
 entity val;
 for (int i=0; i< x.getLength(); i++)
 if (messageOnPort(x, "in", i)){
 val = x.getValOnPort("in", i);
 intEnt n = new intEnt(clock+dely);
 arrived.add(n, val);
 }
 double min = minimum();
 if (!arrived.empty())
 holdIn("active", min-clock);
 else passivate();
 due = arrived.assoc_all(new intEnt(min));
}

//need the opposite of the default
public void deltcon(double e, message x){
deltext(e, x);
deltint();
}

public void deltint(){
 clock = clock + sigma;
 arrived.remove_all(new intEnt(clock));
 double min = minimum();
 if (!arrived.empty())
 holdIn("active", min-clock);
 else passivate();
 due = arrived.assoc_all(new intEnt(min));
}

public message out(){
 message m = new message();
 if (phaseIs("active"))
 for (entity p = due.get_head(); p!=null; p=p.get_right())
 m.add(makeContent("out", p.get_ent()));
 return m;
}
}

Parallel DEVS Coupled Models

 57

Experimental Frame Components

Although a model, such as that of the processor, can be tested in a stand-
alone fashion, it really does not "come to life" until it is coupled with a module
capable of providing it input and observing its output. As we will see in the
next chapter, an experimental frame module is a coupled-model, which when
coupled to a model, generates input external events, monitors its running,
and processes its output. The design of an experimental frame reflects the
objectives one has in experimenting with a model. Thus the same model
might be coupled to different experimental frame modules, which observe it
under different conditions. (If desired, experiments under different
experimental conditions can all be done in parallel by coupling a copy of the
model to each frame.) Conversely, the same experimental frame module may
be employed to experiment with different models under the same conditions.

We now show how to construct a generator and a transducer to serve as
components in an experimental frame module for measuring performance of
processors, which will be defined, in the next chapter.

Atomic model I/O Behavior Description

generator generates jobs with fixed
interarrival time

generator of time
consuming jobs

generates jobs at random times
with assigned randomly distributed
processing time

transducer records job arrivals and departures
and measures turnaround time and
throughput

Stop/Start Generator

In principle, a generator is an autonomous model, (its behavior is self induced
by recurring internal events) hence, it does not need an external transition
function to dictate its response to external input events. However, we have
added an input ports “start“ and “stop“ which, when stimulated, start and
stop the generation of outputs.

public class genr extends atomic{
 protected double int_arr_time;
 protected int count;
 protected entity ent;

public genr(String name, double Int_arr_time){
 super(name);
 addInport("stop");

Chapter 4

 58

 addInport("start");
 addInport("setPeriod");
 addOutport("out");
 phases.add("busy");
 int_arr_time = Int_arr_time ;
 initialize();
 }

 public void initialize(){
 phase = "passive";
 sigma = INFINITY;
 count = 0;
 super.initialize();
 }

public void deltext(double e, message x){
 Continue(e);
 for(int i=0; i< x.getLength();i++)
 if(messageOnPort(x, "setPeriod", i)){
 entity en = x.getValOnPort("setPeriod", i);
 doubleEnt in = (doubleEnt)en;
 int_arr_time = in.getv();
 }
 for(int i=0; i< x.getLength();i++)
 if(messageOnPort(x, "start", i)){
 ent = x.getValOnPort("start", i);
 holdIn("busy", int_arr_time);
 }
 for(int i=0; i< x.getLength();i++)
 if(messageOnPort(x, "stop", i))
 passivate();
 }

 public void deltint(){
 if(phaseIs("busy")){
 count = count + 1;
 holdIn("busy", int_arr_time);
 }
 }

 public message out(){
 message m = new message();
 content con = makeContent("out", new entity("job" + count));
 m.add(con);
 return m;
 }
}

Generator of Time Consuming Jobs

public class genrRand extends genr{

protected double int_arr_time;
 protected int count;
 rand r;

public genrP(String name,double Int_arr_time){
 super(name,Int_arr_time);
}

Parallel DEVS Coupled Models

 59

public void initialize(){
if (r != null)
 holdIn("busy",r.uniform(int_arr_time));
 count = 0;
 super.initialize();
 }
public void deltext(double e,message x)
{
Continue(e);

 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"start",i))
 {
 holdIn("busy",r.uniform(int_arr_time));
 }

 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"stop",i))
 passivate();
}

public void deltint()
{
if(phaseIs("busy")){
 count = count +1;
 holdIn("busy",r.uniform(int_arr_time));
}
}

public message out()
{
 message m = new message();
 content con = makeContent("out",
 new job("job" + count,r.expon(1000)));
 m.add(con);
 return m;
}
}

Transducer

The transducer is designed to measure two performance indexes of interest
for computer processors: the throughput and average turnaround time of jobs
in a simulation run. Recall that throughput is the average rate of job
departures from the architecture, estimated by the number of jobs processed
during the observation interval, divided by the length of the interval. A job’s
turnaround time is the length of time between its arrival to the processor and
its departure from it as a completed job. Note that for the simple processor P,
the turnaround time is the same as the processing time. However, for more
complex architectures, this relationship is not necessarily true, as we shall
see.

To compute the performance measures, the transducer, transd places job-ids
that arrive at its 'ariv input port on its arrived-list together paired with their
arrival times. When, and if, the job-id also appears at the 'solved input port,
transd places it on the solved-list} and also computes its turnaround time.
transd maintains its own local clock to measure arrival and turnaround times.

Chapter 4

 60

The DEVS formalism does not make available the simulation clock time to
model components. Thus models have to maintain their own clocks if timing
is needed. They can easily do so by accumulating elapsed time information,
which is available in the form of sigma and e.

Note that, in contrast to a generator, a transducer is essentially driven by its
external transition function. In transd, an internal transition is used only to
cause an output at the end of the observation interval. In a more general
experimental frame, the role of terminating the simulation run would be
handled by a component called an acceptor.

As illustrated in transd, any atomic model, can write directly into disk files to
maintain a log of events over time.

public class transd extends atomic{
 protected function arrived, solved;
 protected double clock, total_ta, observation_time;

 public transd(String name, double Observation_time){
 super(name);
 addInport("ariv");
 addInport("solved");
 addOutport("out");
 phases.add("active");
 arrived = new function();
 solved = new function();
 observation_time = Observation_time;
}

Parallel DEVS Coupled Models

 61

public void initialize(){
 phase = "active";
 sigma = observation_time;
 clock = 0;
 total_ta = 0;
 super.initialize();
 }

public void deltext(double e, message x){
 clock = clock + e;
 Continue(e);
 entity val;
 for(int i=0; i< x.getLength(); i++){
 if(messageOnPort(x, "ariv", i)){
 val = x.getValOnPort("ariv", i);
 arrived.add(val, new intEnt(clock));
 }
 if(messageOnPort(x, "solved", i)){
 val = x.getValOnPort("solved", i);
 if(arrived.key_name_is_in(val.getName())){
 entity ent = arrived.assoc(val.getName());
 intEnt num = (intEnt)ent;
 double arrival_time = num.getv();
 double turn_around_time = clock - arrival_time;
 total_ta = total_ta + turn_around_time;
 solved.add(val, new intEnt(clock));
 }
 }
 }
}

 public void deltint(){
 clock = clock + sigma;
 passivate();
 show_state();
 }

 public message out(){
 message m = new message();
 content con = makeContent("out", new entity("TA: " +
compute_TA()));
 m.add(con);
 return m;
 }

 public float compute_TA(){
 float avg_ta_time = 0;
 if(!solved.empty())
 avg_ta_time = total_ta/solved.getLength();
 return avg_ta_time;
 }

 public float compute_Thru(){
 float thruput = 0;
 if(clock > 0)
 thruput = solved.getLength()
 return thruput;
 }
}

Chapter 4

 62

Summary

Exercises

Exercise 1: Carwash

Part a) Develop a DEVSJAVA model called CarwashQ (Carwash
with FIFO buffering), which satisfies the following conditions:

Two types of vehicles can be serviced: cars and trucks

It takes 20 time units to wash a car; it takes twice as long as a car to wash a
truck

If carwash is busy washing a car or a truck, other cars are queued (FIFO).
Cars that are queued will be serviced in the order in which they arrived
immediately after the servicing of the current car is complete. If the carwash
is busy, any truck arriving for service will be denied service.

Part b) Complete each of the following tables.

Notes:

§ length of the queue is prior to receipt of the input events

§ input events listed as ((inCar, car1), (inCar, car3), (inCar, car1)) says
that all car arrive at the same time in a given order (left to right –
(inCar, car1) arrives first, (inCar, car3) arrives second, and (inCar, car1)
arrives third)

Table 1:

Time
Input events

Length of
queue

Output
events

0 ((inCar, car1), (inCar, car3), (inCar, car1)) NA

20 (out, car1)

40

60

70

Parallel DEVS Coupled Models

 63

Table 2:

Time Input events Length

of queue

Output
events

0 ((inTruck, truck2), (inCar, car2), (inCar, car3)) 0 NA

20

40 (out, truck 2)

60

70

80

95 NA

Table 3:

Time Input events Length

of queue

Output
events

0 ((inCar, car1), (inCar, car2), (inTruck, truck1),
(inCar, car3), (inTruck, truck2))

 NA

20 (out, car1)

30

40 (out, car2)

55 (inCar, car3)

60 (out, car3)

75

80 (inTruck, truck2) (out, car3)

100

120 (out,
truck2)

Chapter 4

 64

Exercise 2:

Consider the road below, which consists of, three segments – east and west
segments allow vehicles to travel in east and west directions. The center road
segment (bridge) can only be used either for west to east (W→E) or east to
west (W←E) at any given time. To control only one-way traffic on the bridge,
suppose there are two traffic lights – East-West Light (EWL) and West-East
Light (WEL). Assume the followings:

§ Each traffic light can be either green or red at any given time

§ EWL and WEL are always opposite to one another (one is red and the
other green and the switch from green to red or vice versa is
instantaneous)

§ Each traffic light setting alternates between green and red

§ Traffic light stays red or green for 50 seconds

§ Assume it takes 10 seconds for a vehicle to cross the bridge

§ As necessary, vehicles are queued (using First In First Out discipline) on
both east and west entry points of the bridge

§ During a green light, at most five vehicles can go cross the bridge – one
vehicle can be on the bridge at a given time

§ Vehicles can arrive simultaneously at both east and west entry points of
the bridge

Hint: A vehicle can go through the green traffic light (and thus cross the
bridge) only when at least 10 seconds is left before the traffic light is changed
to red; no vehicle is allowed to go through red light

Write a Parallel DEVS “Bridge Segment” atomic model with ports (pseudo or
Java code) which receives inputs representing arrivals of vehicles at the each
of the two entry points (possibly simultaneously) and generates outputs for
every vehicle that crosses the bridge while satisfying the above rules.

Parallel DEVS Coupled Models

 65

EWL: East-West Light

east entry point

west entry point

WEL: West-East Light green

red

West Segment East SegmentBridge Segment

Exercise 3: Hummingbird-Feeder

Consider a Hummingbird-Feeder and three species (medium, small, and tiny)
of hummingbirds. The feeder has maximum capacity of 16 oz. It feeds any
hummingbird belonging to these species. If the amount of nectar in the
feeder is less than or equal to 2 oz, the feeder needs refilling. Assume the
species are categorized in terms of their size: medium, small, and tiny. The
amount of nectar consumption is 0.3, 0.2 and 0.1 oz during each feeding
period depending on the size of the bird medium, small, and tiny,
respectively. Assume birds arrive at input port arrival to feed. Input ports
refill and amount are used to refill the feeder with nectar and inquire how
much nectar is available in the feeder, respectively. Output ports are
requestRefill and availability. The former is used to request for refilling of the
feeder and the later to report the available amount of nectar. For simplicity,
make the following assumptions: (1) only one bird can feed at a time; (2)
some non-zero time elapses between two consecutive feedings, (3) the time
it takes for all species to feed is constant, and (4) multiple input events
cannot occur simultaneously.

Exercise 4: Hummingbird-Feeder: Advanced Version

Consider the Hummingbird-Feeder problem in light of the following:

Disregard assumptions 2 and 4;

events arriving on input ports amount and refill take zero and ten units of
time to be processed, respectively;

Chapter 4

 66

constant consumption rate for each type of bird − each uninterrupted round of
feeding takes 15 units of time;

while a bird is feeding, it can be interrupted by another bird. Assume the bird
that gets interrupted will not return to complete it’s feeding, but can always
begin a new round of feeding!

Recall from problem statement below that it takes the same amount of time
for each type of bird (i.e., tiny, small, medium) to fully consume its maximum
allowed nectar consumption (i.e., 0.1, 0.2, and 0.3 oz respectively) in each
feeding session. Implement the revised hummingbird-feeder in DEVSJAVA.
Devise representative input sequences in order to ensure correctness of the
model and its implementation.

Solution

Exercise 4: Hummingbird-Feeder: Advanced Version

Additional assumptions:

Hummingbird-feeder ignores external events if it is not in phase “passive”

Duration period assignments for Feed, refill, and query are all finite and at
least equal to one unit of time

When available nectar is to become less than 2.0 oz, refill order is issued.
However, note that more than 2 oz of nectar must be available before a bird
can feed.

Parallel DEVS Coupled Models

 67

X

0

S

t

E

Y

Hummingbird-Feeder

10

e=10

σ=25

msg: ((arrival, m), (arrival, t) , (refill, true))

passive

σ=35/10

feeding

msg: ((amount,))

20

feeding

no output

10

querying

msg: ((amount,), (arrival, s))

45

feeding
passive

2.30 oz

2.53 oz 2.46 oz

2.6 oz nL

20

σ = INFINITY

phase

σ=0 σ=0

Part (a):

We represent the Hummingbird-Feeder as follows:

(), , , , , ,ext intDEVS X Y S taδ δ λ=

where

//t := tiny; s := small; m := medium

{" "," "," "}InPorts arrival refill amount=

where { , , }, { , }, {}arrival refill amountX t s m X true false X= = = (empty set),

{(,) | , }X p v p IPorts v Xp= ∈ ∈ is the set of input port and value pairs;

{" "," "}OutPorts requestRefill availability=

where { , }, { | 2 16},requestRefill availabilityY true false Y amt amt= = ≤ ≤

{(,) | , }Y p v p OutPorts v Yp= ∈ ∈ is the set of output port and value pairs;

1,{" "," "," "," "} { | 2 16}{ , , , };S passive feeding refilling querying amt amt t s m nil× ℜ +
∞= ≤ ≤

//nL := nectarLevel

Chapter 4

 68

//bT := birdType

() ()(), , , , , ,ext phase nL bT e p vδ σ =

 ()" ", , ,feedfeeding time nL v ,

if " "phase passive= & " "p arrival= & v t= & 2.1nL ≥

 ()" ", , ,feedfeeding time nL v ,

if " "phase passive= & " "p arrival= & v s= & 2.2nL ≥

 ()" ", , ,feedfeeding time nL v ,

if " "phase passive= & " "p arrival= & v m= & 2.3nL ≥

 ()" ", , ,refillrefilling time nL bT ,

if " "phase passive= & " "p refill=

 ()" ", , ,queryquerying time nL bT ,

if " "phase passive= & " "p amount=

(), , ,phase e nL bTσ −

otherwise;

(), , ,int phase nL bTδ σ =

()" ", , ,passive nL 0.1 nil∞ − ,

if " "&phase feeding bT t= =

()" ", , ,passive nL 0.2 nil∞ − ,

if " "&phase feeding bT s= =

()" ", , ,passive nL 0.3 nil∞ − ,

if " "&phase feeding bT m= =

()" ", , ,passive 16 nil∞ ,

if " "phase refilling=

()" ", , ,passive nL nil∞ ,

if " "phase querying=

Parallel DEVS Coupled Models

 69

(), , ,phase nL bTλ σ =

 (),requestRefill true if " "phase feeding= & bT t= & nL 2.1≤ ,

 (),requestRefill false if " "phase feeding= & bT t= &

nL 2.1> ,

 (),requestRefill true if " "phase feeding= & bT s= &

nL 2.2≤ ,

 (),requestRefill false if " "phase feeding= & bT s= &

nL 2.2> ,

 (),requestRefill true if " "phase feeding= & bT m= &

nL 2.3≤ ,

 (),requestRefill false if " "phase feeding= & bT m= &

nL 2.3> ,

 (),availability nL if " "phase querying= ;

 φ (null output) otherwise

 (), , ,ta phase nL bTσ σ=

Exercise 5:

Consider a DEVS representation of a class of discrete time models. In this
particular class all atomic models have a time advance that can be only 1 or
infinity. Except for the restrictions on time advance values, such models
follow the usual parallel DEVS conventions. In particular they can produce
output messages, which may or may not be null. In a coupled model
containing these models as components, the normal coupling rules apply so
that components can get inputs from a subset (possibly empty) of other
components. We’ll restrict attention to coupled models that have no external
input ports and which initialize their components so that their elapsed times
are zero.

An example of such an atomic model is the following. It can receive any
number of real valued inputs on its input port “in”. No matter what its current
state is, when it receives a bag of such inputs, it takes their average. If the
average is less than 1, it passivates. Otherwise, it outputs the average after 1
time unit on port “out”, and if no input is received at that time, it passivates.
In either mathematical form or pseudo code, write a parallel atomic DEVS
model for this example.

Chapter 4

 70

Using the standard Parallel DEVS simulation protocol, describe the exact
conditions under which the internal, external and confluent transition
functions of the components are applied in a simulations of coupled models
with components described in a).

Consider coupled models of components of the discrete time class described
above (of which those in a) are special cases). Assume the number of
components is very large and the maximum number of influences of any
component (the possible receivers of its output) is very much smaller.
Develop an optimization of the standard Parallel DEVS simulation protocol
that allows the coordinator to use its knowledge of the restricted time
advances and the model coupling information to reduce the number of
messages it exchanges with the simulators of the components. Your
algorithms for coordinator and simulator can be given in any convenient form.
Explain where your version provides the savings in messages in comparison
to the standard protocol.

Chapter 5

PARALLEL DEVS COUPLED MODELS

Coupled Models in the DEVS Formalism

The DEVS formalism includes the means to build models from components.
The specification in the case of DEVS with ports includes the external
interface (input and output ports and values), the components (which must
be DEVS models), and the coupling relations.

0

2

0 1

1 2

{((," "),(," ")}

{((," "),(," ")}
{((," "),(," ")),

((," "),(," "))}

EIC N in p in

EOC p out N out
IC P out P in

P out P in

=

=
=

Where

 {(,) | , }X p v p IPorts v Xp= ∈ ∈ is the set of input ports and values;

 {(,) | , }Y p v p OPorts v Yp= ∈ ∈ is the set of output ports and values;

 D is the set of the component names;

Component Requirements:

 Components are DEVS models:

 For each d D∈

 (), , , , , ,d d d ext intM X Y S taδ δ λ= is a DEVS

 with {(,) | , }d dX p v p IPorts v Xp= ∈ ∈

 {(,) | , }d dY p v p OPorts v Yp= ∈ ∈

Chapter 5

 72

Coupling Requirements:

q external input couplings connect external inputs to component inputs:

 {((,),(,))| , , }N d N d dEIC N ip d ip ip IPorts d D ip IPorts⊆ ∈ ∈ ∈

q external output couplings connect component outputs to external
outputs:

 {((,),(,)) | , , }d N N d dEOC d Op N op op OPorts d D op OPorts⊆ ∈ ∈ ∈

q internal couplings connect component outputs to component inputs:

 {((,),(,)) | , , , }a b a a b bIC a Op b ip a b D op OPorts ip IPorts⊆ ∈ ∈ ∈

However, no direct feedback loops are allowed, i.e., no output port of a
component may be connected to an input port of the same component i.e.,

 () ()(), , ,d dd op e ip IC∈ implies d e≠ .

q Range inclusion constraints require that the values sent from a source
port must be within the range of accepted values of a destination port,
i.e.,

() ()(), , ,N d N dN ip d ip EIC : Xip Xip∀ ∈ ⊆

() ()(), , ,a N a Na op N op EOC:Yop Yop∀ ∈ ⊆

() ()(), , ,a b a ba op b ip IC:Yop Xip∀ ∈ ⊆

Warning: mismatch in expectations between the data type sent by a
component and the type expected by the receiver is a major source of
potential errors in coupling of components. We saw this in DEVSJAVA in the
discussion on sending and receiving messages in Chapter 5. We’ll return to
the topic in Chapter 8.

Coupled model I/O Behavior Description

pipeSimple Sequence of processors forming a pipeline
processor

netSwitch Switch sending input to two processors
alternatively

gpt Generator sends jobs to processor which is
observed by transducer

ef Experimental frame consisting of generator
and transducer

Parallel DEVS Coupled Models

 73

efp Hierarchical model which top level consisting
of experimental frame and processor

Example: Simple Pipeline

We construct a simple coupled model by placing three processors in series to
form a pipeline. As shown in Figure 17, we couple the output port “out” of the
first processor to the input port “in” of the second, and likewise for the second
and third. This kind of coupling is called internal coupling (IC) and, as in the
above specification, it is always of the form where an output port connects to
an input port. Since coupled models are themselves usable as components in
bigger models, we give them input and output ports. The pipeline has an
input port “in” which we connect to the input port “in” of the first processor.
This is an example of external input coupling (EIC). Likewise there is an
external output port “out” which gets its values from the last processor’s “out”
output port. This illustrates external output coupling (EOC).

in outout
p2p1p0

pipeSimple

in

in

out

in

out

EIC

IC EOC

Figure 17 Pipeline coupled model

The coupled DEVS specification of the pipeline is as follows:

(), , ,{ | }, , ,dN X Y D M d D EIC EOC IC= ∈

Where

Chapter 5

 74

{" "},Inports in=

inX V= (an arbitrary set),

{(" ,) | }X in v v V= ∈

{" "},OutPorts out= ,

 outY V=

{(" ",) | }Y out v v V= ∈

0 1 2{ , , };D p p p=

2 1 0, ,Mp Mp Mp are DEVS Simple Processor models

0{((," "),(," ")}EIC N in p in=

2{((," "),(," ")}EOC p out N out=

0 1{((," "),(," ")),IC P out P in=

 1 2((," "),(," "))}P out P in

Implementing Coupled Models in DEVSJAVA
public class pipeSimple extends digraph{

public pipeSimple()

public pipeSimple(String name,double proc_time)
{
 super(name);

 atomic p0 = new proc("proc0", proc_time/3);
 atomic p1 = new proc("proc1", proc_time/3);
 atomic p2 = new proc("proc2", proc_time/3);

 add(p0);
 add(p1);
 add(p2);

 AddCoupling(this, "in", p0, "in");
 AddCoupling(p0,"out",p1,"in");
 AddCoupling(p1,"out",p2,"in");
 AddCoupling(p2,"out",this,"out");

initialize();
 }
 }

The Behavior of Coupled Models

The interpretation of coupling specifications is illustrated in Figure 18. An
external event, x1 arriving at the external input port of pipeSimple is

Parallel DEVS Coupled Models

 75

transmitted to the input port “in” of the first processor. If the latter is passive
at the time, it goes into phase “busy” for the processing time. Eventually, the
job appears on the “out” port of p0 and is transmitted to the “in” port of p1
due to the internal coupling. This transmission from output port to input port
continues until the job leaves the external output port of the last processor
and appears at the output port of pipeSimple due to the external output
coupling.

x1

busy

busy

x1

p0
phase

p0
output

p1
phase

p1
output

busy

busybusy

x2

x1

x1

x1

x2

 Figure 18 Message transmission due to coupling

Now if the jobs arrive at the same rate that they are processed, the situation
shown in the second part of Figure 18 will arise. The outputs of processors p0
and p1 are generated at the same time with the output of p0 appearing as
the input to p1. In Classic DEVS, only one component could be activated of
those with the same minimum time of next event. In this case, there are two
choices for the modeler to make. Should p1 a) apply its internal transition
function to return to phase “passive” in which it can accept the upstream
input, or b) should it apply its external transition function first in which case it
will lose the input since it is in phase “busy. ”

In contrast, in Parallel DEVS, both processors generate their outputs – p0’s
output goes to p1’s input. Since now p1 has both internal and external
events, the confluent transition function is applied. Now, the implementation
of the simple processor as class proc in last chapter defined the confluent
function to first apply the internal transition function and then the external
one. As we have seen, this causes p1 to complete the finished job before
accepting the incoming one.

Chapter 5

 76

busy

x1

busybusy

x2

p0
phase

p0
output

p1
phase

p1
output

Figure 19 Handling of imminent components in parallel DEVS

Now consider a pipeline in which a downstream processor’s output is fed back
to an upstream processor. For example, let p1’s output be fed back to
precessor1’s input. In Classic DEVS, we must always make the same choice
among imminent components. Thus either one or the other processor will lose
its incoming job (assuming no buffers). However, in Parallel DEVS, both
processors output their jobs and can handle the priorities between arriving
jobs and just finished jobs in a manner specified by the confluent transition
function.

More Examples of Coupled Models

Switch Network

A second example of a coupled network employs the switch DEVS model
defined before to send jobs to a pair of processors.

Parallel DEVS Coupled Models

 77

in out
s0

netSwitch

in

out

p1

p0

out

out
out1

in

in

Figure 20 Switch network

As shown in Figure 20 the “out” and “out1” ports of the switch are coupled
individually to the “in” input ports of the processors. In turn, the “out” ports
of the processors are coupled to the “out” port of the network. This allows an
output of either processor to appear at the output of the overall network. The
coupled DEVS specification is:

(), , ,{ | }, , ,dN X Y D M d D EIC EOC IC= ∈

Where

{" "},Inports in=

inX V= (an arbitrary set),

{(" ,) | }MX in v v V= ∈

{" "},OutPorts out=

 outY V=

 {(" ",) | }MY out v v V= ∈

{ , , };0 0 1D switch processor processor=

0;0 1Mswitch switch Mprocessor Mprocessor processor= = =

Chapter 5

 78

{(," "),(," ")}0EIC N in Switch in=

{((," "),(," ")),0EOC processor out N out=

 ((," "),(," "))}1processor out N out

 {((," "),(," ")),0 0IC Switch out processor in=

 ((," "),(," "))}0 1 1Switch out processor in

Parallel DEVS coupled models are specified in the same way as in Classic
DEVS except that the Select function is omitted. While this is an innocent
looking change, its semantics are much different − they differ significantly in
how imminent components are handled. In Parallel DEVS there is no
serialization of the imminent computations − all imminent components
generate their outputs, which are then distributed to their destinations using
the coupling information. The detailed simulation algorithms for parallel DEVS
will be discussed in later chapters

Generator/Processor/Transducer

genr

gpt

start

transd

proc

out

out

out

out

in

ariv

solved result

stop

Figure 21: GPT model

public class gpt extends digraph{

public gpt(){
 super("gpt");

Parallel DEVS Coupled Models

 79

 atomic g = new genr("g",1000);
 atomic p = new proc("p",1000);
 atomic t = new transd("t",5000);

 add(g);
 add(p);
 add(t);

 addTestPortValue("start",new entity());
 addTestPortValue("stop",new entity());

 AddCoupling(this,"start",g,"start");
 AddCoupling(this,"stop",g,"stop");

 AddCoupling(g,"out",p,"in");
 AddCoupling(g,"out",t,"ariv");
 AddCoupling(p,"out",t,"solved");
 AddCoupling(t,"out",g,"stop");

 AddCoupling(p,"out",this,"out");
 AddCoupling(t,"out",this,"result");

 initialize();
}
}

Experimental Frame

Instances of the classes, genr and transd discussed earlier are coupled
together to form the experimental frame, ef a digraph-model shown in Figure
22. The input port “in” of ef is for receiving solved jobs, which are sent to the
“solved” input port of transd via the external input coupling. There are two
output ports: “out”, which transmits job identifiers sent to it by genr, and
'result which transmits the performance measures computed by transd.
External output couplings bring about both these transmissions. Finally, there
are two internal couplings: the output port “out” of genr sends job identifiers to
the 'ariv port of transd and the output port “out” of transd which couples to the
'stop input port of genr.

 It should be noted that output lines might diverge to indicate the occurrence
of simultaneous events. Thus for example, when genr sends out a job
identifier on port “out”, it goes at the same clock time, both to the “ariv” port
of transd and port “out” of ef, hence eventually to some processor model.
Also, convergence of input lines, i.e., two or more source ports connected to
the same destination port, can occur. Convergence does not pose a problem
since in Parallel DEVS bags represent the collection of inputs that arrive
simultaneously at a component.

Chapter 5

 80

start start outout

solved

arriv

genr

transd

stop
stop

in

resultout

ef

 Figure 22 Experimental frame

The implementation of the experimental frame in DEVSJAVA is shown in the
following:

public class ef extends digraph{

public ef(String nm,int int_arr_t,int observe_t){
 super(nm);
 atomic g = new genr("genr",int_arr_t);
 atomic t = new transd("transd",observe_t);

 add(g);
 add(t);

 addTestPortValue("start",new entity());
 addTestPortValue("stop",new entity());

 AddCoupling(g,"out",t,"ariv");
 AddCoupling(this,"in",t,"solved");
 AddCoupling(t,"out",g,"stop");
 AddCoupling(this,"start",g,"start");
 AddCoupling(this,"stop”,g,"stop");
 AddCoupling(g,"out",this,"out");
 AddCoupling(t,"out",this,"result");

 initialize();
}
}

Parallel DEVS Coupled Models

 81

Hierarchical Models

Hierarchical models are coupled models with components that may be atomic
or coupled models. Recall Figure 23 in which experimental frame, ef
encapsulates a generator and a transducer into a coupled model. Figure 23
shows that an experimental frame can then be coupled to a processor to
provide it with a stream of inputs (from the generator) and observe the
statistics of the processor’s operation (the transducer). The processor can be
an atomic model, as is the processor with buffer, for example, or can itself be
a coupled model, for example, the pipeline coupled model in Figure 17. The
“closure under coupling” property of DEVS, mentioned in Chapter 1,
guarantees that coupled models can indeed be treated as basic models in
larger coupled models. The simulation protocol was implemented in
DEVSJAVA in such a way that closure under coupling and therefore,
hierarchical model construction, will be supported.

out

in

processor

ef

in

out
start/stop

ef-p

Figure 23 Hierarchical model construction

Implementing Hierarchical Models in DEVSJAVA

Implementing a hierarchical model in DEVSJAVA is a “no-brainer” – you
simply treat a coupled model as you would an atomic model as a component
in a coupled model you are building. For example, in the following code, we
assume that the digraph class, ef has already been defined. In constructing
the enclosing hierarchical model, efp we make an instance of ef and couple it
up with the processor component in the same was an atomic model would be
treated. Likewise, if we want to replace the simple atomic processor by a
pipeline-coupled model we would replace the definition of the variable p in the
code by the line currently commented out.

Chapter 5

 82

public class efp extends digraph {

public efp (){
 super("efp");
 atomic p = new proc("proc",25);
 // digraph p = new pipeSimple(“pipe”, 20);
 digraph expf = new ef("ExpFrame",10,100);

 add(expf);
 add(p);

 AddCoupling(this,"start",expf,"start");
 AddCoupling(this,"stop",expf,"stop");

 AddCoupling(expf,"out",p,"in");
 AddCoupling(p,"out",expf,"in");

 initialize();
 }
 }

Summary

Exercises

Exercise 1:

Define the coupled model for a cyclic pipeline and draw a state trajectory
similar to that in Figure 19.

Exercise 2:

Consider a system consisting of a Heat Source and a Heat Sink. The heat
source produces “heat impulses” at some constant time interval. Assume the
Heat Source can be represented as an atomic model. The Heat Sink is a
homogenous tube capable of absorbing heat impulses at one of its two ends
(see figure below). Assume the tube is to be modeled as a flat two-
dimensional homogeneous surface. Now consider a system (called Heat
Transport) composed of the Heat Source and the Heat Sink where the former
is placed at one of the ends of the latter (see figure below). The tube’s entire
surface temperature is initially set to zero.

Parallel DEVS Coupled Models

 83

(0, 0, 0) (100, 0, 0)

(i, j, 0)

(0, 50, 0)

(i′, j′, 0)

Heat impulse produced by Heat Source

Heat Sink (tube)

...

...

a) Develop DEVS model of Heat Transport. That is, specify model types most
suitable for Heat Transport and the Heat Sink. Also, specify necessary
input/output ports for Heat Source, Heat Sink, and Heat Transport as well as
appropriate input/output couplings.

b) Assume Heat Source is to be represented as a block model. Revise the
model developed in the previous part to account for the new model of the
Heat Transport. Include any assumptions you make.

Chapter 6

EXERCISING MODELS: PARALLEL DEVS
SIMULATION PROTOCOL

There are three approaches to parallel and distributed simulation of discrete
event models: conservative, optimistic schemes, and the Parallel DEVS
simulation protocol. In the conservative and optimistic schemes simulation is
viewed as moved forward by the processing of time-stamped messages. In
the third, DEVS-based approach, simulators are designed based directly on
the DEVS formalism. The Parallel DEVS protocol can be viewed as an extreme
form of risk-free optimism (not even local rollback occurs) and does not incur
the overheads of conservative and optimistic schemes. Instead of trying to
overlap processing of input events with different time-stamps, it seeks to
exploit parallelism in the simultaneous occurrence of internal and external
events (hence with the same, or closely spaced, time stamps) among many
components.

Conservative and Optimistic Schemes

In the conservative and optimistic schemes simulation is viewed as moved
forward by the processing of time-stamped messages. As depicted in Figure
24, such logical processors have input events queued in order of earliest
time-stamp. Two laws govern processing:

q As a result of processing an input event, logical processors are
assumed to produce output messages whose time-stamps are not
earlier than the input time-stamp (processing can’t proceed backwards
in time).

q Messages must be processed in order of time-stamps in the queues −
schemes differ in how they treat this constraint.

In conservative schemes the time-stamped order constraint is never violated.
Optimistic schemes allow temporary violation that must be repaired before
the final simulation output is presented. The conservative approach is
illustrated in Figure 24, where there are two logical processors LP1 and LP2
with queues of time stamped messages. We start in the upper left hand

Parallel DEVS Simulation Protocol

 85

corner, where LP1 cannot process its next input (a, 3) because there is
potential for an earlier message from LP2 due to the presence of input (d, 1)
in its queue. Conservative schemes must somehow arrange for the potential
for input events with earlier time stamps to be conveyed to affected
processors. This can be done through “lookahead” in which each LP provides a
time in the immediate future up to which it promises not to send input
events. The minimum of such blackout times at any LP, called the Lower
Bound Stamp Time, is the time up to which it can safely process its time-
stamped inputs. Thus, simulation proceeds incrementally governed by the
lookahead, which is the interval that an LP adds to its current Lower Bound
Stamp Time to obtain the blackout time sent to other LPs. In the example,
the lookahead for LP2 is 1 and the only way that time can advance is for LP2
to process its input (d, 1) which results in a message (d’, 2) sent to LP1 as
shown in the middle box. The lower, left hand box shows that LP1 has added
the new message to the head of its queue. Large lookahead values are
needed to gain advantages over sequential simulation, but unfortunately,
such large lookaheads are difficult to find in many representations of reality.

a 3

b 4

c 6
e 5

f 9

d 1

LP1 LP2

a 3

b 4

c 6

e 5

f 9

d’ 2

LP1 LP2

a 3

b 4

c 6

e 5

f 9

d’ 2

LP1 LP2

Figure 24 Conservative scheme

Optimistic schemes allow LPs to march forward in local time and process their
input queues as fast as they can. Consider the situation shown in the upper,
left hand corner of Figure 25. Here, LP1 and LP2 have arrived at the situation
where LP2 has processed events (d, 1) and (e, 5) and sent input events (d’,
5) and (e’, 6) to LP1. Now, LP1 processes event (a, 3), which causes it, send
an input (a’, 3) to LP2 as shown in the middle of Figure 25. However, since
LP2 has already processed event (e, 5), the new input (a’, 3) is called a
straggler since it is out of place in the time-stamped order of processing. To

Chapter 6

 86

rectify this situation, queues of already processed inputs and their outputs are
maintained so that the situation can be restored to what it was just before the
arrival of the straggler. This involves sending “anti-messages” such as (e’, 6)
that annihilate the effects of already sent messages and “rolling back”
processors’ states to those prevailing just before the straggler’s detection
(this also requires state saving). In the example, note that the processing of
(d, 1) does not need to be rolled back since it is time-stamped earlier than
straggler (a’, 3). You can see that an extensive apparatus of overhead must
be maintained to make this all work offering many opportunities for
optimization and investigation by computer scientists. One scheme, called
“risk free”, allows LPs to proceed unfettered with processing of the input
queues. However they must t refrain from sending outputs until it is safe to
do so. This limits rollback to only the processor receiving the straggler
whereas in general, a whole chain reaction of rollbacks and anti-messages
can result from a single straggler.

a’ 3

LP1 LP2

f 9 e’ 6

d’ 5

b 4

c 6

e’ 6

d’ 5

e 5

d 1

a 3
f 9

LP1 LP2

b 4

c 6

e’ 6

d’ 5

LP1 LP2

¬(e’ 6)

b 4

c 6

e’ 6

d’ 5
d 1

e 5

f 9

Already
sent
outputs

Already
processed
inputs

Already
processed
inputs

Already
sent
outputs

d’ 5

Figure 25 Optimistic scheme

Simulating DEVS Models with Conservative and Optimistic
Schemes

A DEVS component in a coupled model can map into a logical processor with
some adjustments. External input and output events correspond to those
handled by LPs. However, internal events are not represented in the LP
framework. To include internal events, we can consider them as input events

Parallel DEVS Simulation Protocol

 87

that an LP sends back to itself for processing. However, depending on how it
is done, this may add to the traffic load on the underlying communications
network. Moreover, while DEVS has specific means of dealing with
simultaneous events, most schemes avoid these like the plague. Thus, it is
an attractive alternative to create specific simulation protocols to simulate
DEVS models.

Parallel DEVS Simulation Protocol

The simulation process for DEVS models, whether Atomic or coupled,
proceeds by iteration of a basic cycle as is illustrated in Figure 26. Processing
can be carried out in two ways: event-driven or time-stepped. The event
driven approach, which relates to the spirit of the conservative and optimistic
schemes, is usually much faster and more efficient. However, the time-
stepped approach allows easier animation and can be employed for execution
of models in real wall clock time, as opposed to simulated time.

Atomic Model Simulators

Let’s first take the point of view of an atomic model as it undergoes
simulation. In both the event-driven or time-stepped approaches, every
atomic model has a simulator assigned to it, which keeps track of the time of
the last event, tL and the time of the next event, tN for its model. Initially,
the state of the model is initialized as specified by the modeler to a desired
initial state, sinit. The event times, tL and tN are set to 0 and ta(s init),
respectively. In event-driven execution, if there are no external events, the
clock, t is advanced to tN whereupon the output is generated and the internal
transition function of the model is executed. The simulator then updates the
event times as shown, and processing continues to the next cycle. If an
external event is injected to the model at some time, text (no earlier than the
current clock and no later than tN), the clock is advanced to text and the input
is processed by the confluent or external event transition function, depending
on whether text coincides with tN or not.

The time-stepped approach is employed in the atomic and coupled applets of
DEVSJAVA. Here each Atomic model is assigned its own individual thread and
can be executed in stand-alone fashion, as well as a component within a
coupled model. To advance time, the loop in Figure 26 contains a sub-loop,
in which the thread sleeps for 1 millisecond intervals until tN is reached
whence it exits the sub-loop and executes the output and internal transition
functions. While in the sub-loop the thread checks for notice of an external
event, which may originate from the mouse or from the output of another
model. In this case, the makes an early exist from the sub-loop and executes
the confluent or external transition function as appropriate. While in the sub-
loop, the thread continually repaints a panel associated with the applet with a
sequence of images (sounds can be added) determined by the current phase
of the model.

Chapter 6

 88

tL =: t

tN =: t + ta(s)

When receive m,

If t != tN, s := δext (s,t-tN,m)

If t == tN, s := δcon (s,t-tN,m)

s =: s init

tL =: 0

tN =: ta(sinit)

 m
timeline

inject at time t

tNtL

 Legend:
m = message
s = state
t = clock time
tL = time of last event
tN = time of next event

If t == tN and no message
received,

 generate output λ (s)

 s =: δint (s)

Figure 26 DEVS simulation process

Coupled Model Coordinators

As shown in Figure 27, the Parallel DEVS scheme differs from the
conservative and optimistic schemes in that there is a coordinator to
synchronize the simulation cycle through its steps. To start a cycle, the
coordinator, C collects the times of next event from the component
simulators. It sends the minimum of these times back to the components,
thereby allowing them to determine whether they are imminent, and if so to
generate output. More than one component may be imminent and the outputs
of all such imminents are sorted and distributed to others according to the
coupling specification of the coupled model. The transition functions of the
imminent components, as well as all other recipients of inputs, are then
applied. As we have seen in the atomic simulator case, which transition is
applied, depends on the state and input of a component – imminents with no
inputs apply internal transition functions, imminents with inputs apply
confluent transition functions, and non-immminent components with input
apply external transition functions. The resulting changes in states may cause
new values for time advances and these are sent to the coordinator.
Processing then continues to the next cycle.

Parallel DEVS Simulation Protocol

 89

coordinator

simulator

Component

tN

tN. tL

After each transition
 tN = t + ta(), tL = t

simulator

Component

tN

tN. tL

simulator

Component

tN

tN. tL

Coupled
 Model

1. nextTN

2. outTN

3 getOut

4 getOut

5 applyDelt

Figure 27 DEVS simulation protocol

Let’s follow the sequence of steps in one simulation cycle:

Coordinator sends nextTN to request tN from each of the simulators.

All the simulators reply with their tNs in the outTN message to the coordinator

Coordinator sends to each simulator a getOut message containing the global
tN (the minimum of the tNs)

Each simulator checks if it is imminent (its tN = global tN) and if so, returns
the output of its model in a message to the coordinator in a getOut message.

Coordinator uses the coupling specification to distribute the outputs as
accumulated messages back to the simulators in an applyDelt message to the
simulators – for those simulators not receiving any input, the messages sent
are empty.

As already mentioned, each simulator reacts to the incoming message as
follows:

q If it is imminent and its input message is empty, then it invokes its
model’s inernal transition function

Chapter 6

 90

q If it is imminent and its input message is not empty, it invokes its
model’s confluence transition function

q If is not imminent and its input message is not empty, it invokes its
model’s external transition function

q If is not imminent and its input message is empty then nothing
happens.

Expressing The Parallel DEVS Simulation Protocol as a
Coupled Model

The operation of the DEVS Simulation Protocol can be illustrated within
DEVSJAVA itself. In the following we’ll create a coupled model that portrays
the distributed processing and message exchanges between the coordinator
and the simulators. The coupled model, called simTrip, representing the
simulation protocol is shown in Figure 28. The coupled model that it simulates
is the gpt (generator-processor-transducer) discussed earlier. We define
simulator and coordinator subclasses of atomic to carry out the simulation
protocol. We then make three instances of the simulator class – one for each
of the model components g, p, and t) – and one instance of the coordinator
class. These instances become the components of simTrip. Let’s now look at
the atomic and digraph definitions in DEVSJAVA.

Figure 28 Parallel DEVS protocol within DEVSJAVA

Parallel DEVS Simulation Protocol

 91

Simulator

The class simulator extends atomic as follows:

public class simulator extends atomic{

 protected double tL,tN;
 protected devs myModel;

public simulator(String name,devs model){
 super(name);
 addInport("applyDelt","pair");
 addInport("nextTN");
 addInport("getOut","doubleEnt");
 addOutport("outTN","doubleEnt");
 addOutport("sendOut","message");
 phases.add("sendOut");
 phases.add("outTN");
 myModel= model;
 initialize();
}

public void initialize(){
 super.initialize();
 myModel.initialize();
 tL = 0;
 tN = myModel.ta();
 }

public void deltext(double e,message x)
{
Continue(e);
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"nextTN",i)){
 holdIn("outTN",0);
 }
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"getOut",i))
 {
 entity ent = x.getValOnPort("getOut",i);
 doubleEnt tEnt = (doubleEnt)ent;
 double t = tEnt.getv();
 myModel.compute_input_output(t);
 holdIn("sendOut",0);
 }
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"applyDelt",i))
 {
 entity ent = x.getValOnPort("applyDelt",i);
 pair p = (pair)ent;
 entity Ent = p.getKey();
 doubleEnt tEnt = (doubleEnt)Ent;
 double t = tEnt.getv();
 entity mEnt = p.getValue();
 message m = (message)mEnt;

 myModel.wrap_deltfunc(t,m);
 tN = myModel.next_tn();
 passivate();
 }
}

Chapter 6

 92

public void deltint()
{
passivate();
}

public message out()
{
 message m = new message();
 if (phaseIs("outTN"))
 m.add(makeContent("outTN", new doubleEnt(tN)));
 else if (phaseIs("sendOut") && myModel.get_output()!= null)
 m.add(makeContent("sendOut", myModel.get_output()));

 return m;
}
}

Coordinator

The class coordinator extends atomic as follows:

public class coordinator extends atomic{

 protected double tN;
 protected devs g,p,t;
 protected message gMail,pMail,tMail;

public coordinator(String name,devs G,devs P,devs T){
 super(name);
 addInport("getTN","doubleEnt");
 addInport("getOutfromG","message");
 addInport("getOutfromP","message");
 addOutport("nextTN");
 addOutport("getOut","doubleEnt");
 addOutport("applyDelt","pair");
 phases.add("nextTN");
 phases.add("waitTN");
 phases.add("getOut");
 phases.add("waitOut");
 phases.add("applyDelt");

 g = G;
 p = P;
 t = T;

 initialize();
}

public void initialize(){
 tN = INFINITY;
 gMail = new message();
 pMail = new message();
 tMail = new message();

 holdIn("nextTN",0);
 super.initialize();
 }

Parallel DEVS Simulation Protocol

 93

public void deltext(double e,message x)
{
Continue(e);

 if (phaseIs("waitTN")){
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"getTN",i))
 {
 entity ent = x.getValOnPort("getTN",i);
 doubleEnt tEnt = (doubleEnt)ent;
 double t = tEnt.getv();
 if (t < tN) tN = t;
 }
 }
 else if (phaseIs("waitOut")){
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"getOutFromG",i))
 {
 entity ent = x.getValOnPort("getOutFromG",i);
 message m = (message)ent;
 entity mEnt = m.get_head().get_ent();

 content con = (content)mEnt;
 if (con.p.equals("out")){
 //use g to p and t coupling
 pMail.add(makeContent("in", con.val));
 tMail.add(makeContent("ariv", con.val));
 }
 }
 else if (messageOnPort(x,"getOutFromP",i))
 {
 entity ent = x.getValOnPort("getOutFromP",i);
 message m = (message)ent;
 for (int j=0; j< m.getLength();j++)
 if (messageOnPort(m,"out",j))
 {
 entity val = m.getValOnPort("out",j);
 //use p to t coupling
 tMail.add(makeContent("solved", val));

 }

 }
 else if (messageOnPort(x,"getOutFromT",i))
 {
 entity ent = x.getValOnPort("getOutFromT",i);
 message m = (message)ent;
 for (int j=0; j< m.getLength();j++)
 if (messageOnPort(m,"out",j))
 {
 //use t to g coupling
 gMail.add(makeContent("stop", new entity()));

 }
 }
 }
}

Chapter 6

 94

public void deltint()
{
if (phaseIs("nextTN"))
 holdIn("waitTN",1000);
else if (phaseIs("waitTN")){
 if (tN < INFINITY)
 holdIn("getOut",100);
 else passivate();
}
 else if (phaseIs("getOut"))
 holdIn("waitOut",1000);
 else if (phaseIs("waitOut"))
 holdIn("applyDelt",100);
 else if (phaseIs("applyDelt")){

 tN = INFINITY;
 gMail = new message();
 pMail = new message();
 tMail = new message();

 holdIn("nextTN",100);
 }
}

public message out()
{
 message m = new message();
 if (phaseIs("nextTN"))
 m.add(makeContent("nextTN",new entity("val")));
 else if (phaseIs("getOut"))
 m.add(makeContent("getOut",new doubleEnt(tN)));
 else if (phaseIs("applyDelt")){
 m.add(makeContent("applyDeltG",new pair
 (new doubleEnt(tN),gMail)));
 m.add(makeContent("applyDeltP",new pair
 (new doubleEnt(tN),pMail)));
 m.add(makeContent("applyDeltT",new pair
 (new doubleEnt(tN),tMail)));
 }
 return m;
}
}

Parallel DEVS Simulation Protocol

 95

Coupling the Coordinator and Simulators

The simTrip-coupled model illustrates how the coordinator works together with
simulators for each of the components to implement the Parallel DEVS
simulation protocol.

public class simTrip extends digraph {

 public simTrip(){
 super("simTrip");

 atomic g = new simulator("g",new genr("g",30));
 atomic p = new simulator("p",new proc("p",20));
 atomic t = new simulator("t",new transd("t",200));
 atomic co = new coordinator("co",g,p,t);

 add(co);
 add(g);
 add(p);
 add(t);

 AddCoupling(g,"outTN",co,"getTN");
 AddCoupling(p,"outTN",co,"getTN");
 AddCoupling(t,"outTN",co,"getTN");
 AddCoupling(g,"sendOut",co,"getOutFromG");
 AddCoupling(p,"sendOut",co,"getOutFromP");
 AddCoupling(t,"sendOut",co,"getOutFromT");
 AddCoupling(co,"nextTN",g,"nextTN");
 AddCoupling(co,"getOut",g,"getOut");
 AddCoupling(co,"nextTN",p,"nextTN");
 AddCoupling(co,"getOut",p,"getOut");
 AddCoupling(co,"nextTN",t,"nextTN");
 AddCoupling(co,"getOut",t,"getOut");
 AddCoupling(co,"applyDeltG",g,"applyDelt");
 AddCoupling(co,"applyDeltP",p,"applyDelt");
 AddCoupling(co,"applyDeltT",t,"applyDelt");

 initialize();
}
}

Summary

Exercises

Exercise 1:

In a distributed simulation environment the coordinator and simulators might
be on separate nodes on a communications network. The messages
exchanged between the coordinator and simulators would travel across the
network and be subjected to latency and traffic congestion.

Chapter 6

 96

a) Add a message transducer as a component to the example as shown in
Figure 28. The message transducer merely counts the number of messages
that would flow across the network in a real distributed simulation.

Several modification of the implementation can be studied to reduce the
message traffic while retaining the correctness of the simulation protocol.

b) Simulators need not reply with their next tNs if there is no change from the
previous ones. This requires the coordinator to retain the previous tNs of the
simulators. Modify the simulator and coordinator classes to implement this
concept.

c) Instead of waiting for the coordinator’s getTN message, simulators provide
their next tNs after completing their response to the coordinator’s applyDelt
message. Further modify the simulator and coordinator classes of b) to
implement this idea.

d) Run the digraph models of a), b) and c) with the same parameters given in
the original DEVSJAVA code and record the number of messages exchanged
as measured by the message transducer at the end.

e) Verify that the number of messages has been reduced as suggested and
give a formula for the number of messages exchanged in one simulation cycle
as a function of the number of simulators, n, (in the general case where there
are n components) for protocols a), b) and c).

f) Suggest and implement some additional ways of reducing message traffic
while retaining correctness.

Chapter 7

MULTIPROCESSOR ARCHITECTURES

Prototypical Processing Architectures

At this point, you have learned how to express atomic and coupled models in
DEVSJAVA and you should have a working knowledge of how the underlying
DEVS Parallel simulation protocol works. More particularly, in Chapter 6 we
constructed a hierarchical model coupling up a simple processor model with
an experimental frame. This chapter will show how design some prototypical
multiprocessor architectures to replace the simple processor in such a pair
and compare their performance under the same conditions. The model
domain to be discussed is that of simple workflow architectures such as in
distributed computing, office systems, assembly lines and communication
systems. We are interested in comparing the performance of single processor
systems with multiprocessors including the multiserver, the pipeline, and the
divide and conquer configurations. Performance evaluation will be based on
two fundamental measures, turnaround time, the average time taken by the
system to solve a problem and throughput, the rate at which completed jobs
emerge from the system.

The multiprocessor configurations to be modeled each have a coordinator that
sends jobs (jobs) to some subordinate processors and receives solutions from
them. In the multiserver architecture, the coordinator routes incoming jobs
to whichever processor is free at the time. In the pipeline architecture, jobs
pass through the processors in a, sequence, each processor performing a part
of the solution. Our model can be called a “soft” pipeline. In contrast to
typical hardware pipelines, the problems are routed by the coordinator from
one processor to the next under a programmable schedule. In the divide and
conquer architecture, jobs are decomposed into subtasks that are worked on
concurrently and independently by the processors before being be put
together to form the final solution.

The multiprocessor architectures are prototypical in the sense that forms of
coordination they represent can be found in many diverse applications. Their
implementation in DEVSJAVA illustrates how sophisticated coordination
schemes can be modeled and simulated.

Chapter 7

 98

Performance of Simple Architectures

Table 2 shows typical performance characteristics of the architectures. For
simplicity, the table assumes 3 processors in the architecture but the
relationships are easily generalized to any number of such elements. To
obtain these results, we assume that problems enter the system with a fixed
inter-arrival time and require a processing time associated with processor to
which they are sent. Thus, for a single processor with processing time p, the
turnaround time for each job is (by definition in this case) p. The maximum
throughput occurs when the processor is always kept busy, i.e., it always has
a next job to work on as soon as has finished the previous one. In this case,
the processor can send out solved jobs every p units of time, i.e., at the rate
1/p.

For the multiserver architecture in Table 2, if each processor has the same
processing time p, then the turnaround time is also p. The maximum
throughput again occurs when all of the processors are always kept busy, and
with three processors the combined rate is 3 times that of the single
processor. If there were n processors, the throughput could be increased by n
(this ideal result neglects overhead due to co-ordination and communication
time).

The pipeline architecture can also increase throughput without much effect on
turnaround time. The turnaround time in this case is the sum of the times
taken by each stage and the maximum throughput is that of the slowest
stage (the bottleneck). Ideally, a job can be divided into identically time
consuming stages whose total time is less than the original processing time
(any savings is due the fact that each stage can be optimized to perform only
its specialized task).

Architecture Processing
Time

Turnaround
Time

Thruput

Simple
Processor

 p p 1/p

Multiserver

 homogeneous

 p1,p2,p3

 p1=p2 = p3
=p

3/thruput

 p

1/p1
+1/p2+1/p3

3/p

Pipeline

homogeneous

p1 + p2 + p3
= p

 p

 p

1/max{p1,p2,
p3}

Multi-Processor Architectures

 99

p1=p2 = p3
=p/3

3/p

Divide and
Conquer

homogeneous

p1 + p2 + p3
= p

p1=p2 = p3
=p/3

max{p1,p2,
p3}

p/3

1/max{p1,p2,
p3}

3/p

Table 2: Performance characteristics of simple architectures

Practically speaking, the only architecture that can both significantly reduce
turnaround time and increase throughput is the divide and conquer
configuration. For analysis purposes, this can be regarded as a pipeline
consisting of the job partitioner, the subtask processors, and the compiler of
partial results. The table shows only the parallel processing stage in which all
subtasks are worked on concurrently. For this stage to be finished all of the
processors must be finished, so the processsing time of this stage is the
maximum of the individual processing times. Ideally, each of n subprocessors
takes time p/n, where p is the original job solution time, and the partitioner
and compiler times are much smaller than this. In this case, both the time
for an individual job to be solved (turnaround time) and the time for a large
group of jobs to solved (inverse of throughput) are reduced by a factor of n.

Insight into way these results arise can be gained by following the processing
events as they happen in simulated models of these architectures. We shall
show how to define simple, yet illuminating, versions of these architectures in
DEVSJAVA. By placing these architectures into the experimental
frame/processor hierarchical model of Chapter 6 we can them under various
conditions. An important strategy in simulation methodology is to test the
correctness of the model implementation and the simulation algorithm under
restricted conditions in which experimental frame results are known in
advance. The performance relations presented in Table 2 can serve this
purpose for our simulation of the architectures.

Coordinators and Multiprocessor Architectures

The architectures are built up in the following manner:

q define the coordinator — an atomic model— appropriate to each
case,

q create copies of processors to serve as the subordinate processors,
and

q define each architecture as a digraph model coupling together the
corresponding coordinator and the subordinate processors.

Chapter 7

 100

In what follows, for each architecture, we provide a pseudo-code description
of the coordinator, its DEVSJAVA implementation, and the DEVSJAVA
implementation of the architecture. Although the models are highly simplified
— problems are represented only by time of processing not by actual
content— they illustrate significant aspects of model definition in DEVSJAVA.
We’ll assume the simple processor with name/job ports discussed earlier as
the processing element in the architectures.

Digraph Representation of the Architectures

All the architectures have the same form shown in Figure 29. There is a
coordinator that sends jobs to processors on ports, x and receives them back
on ports, y (there there may also be more information used to distinguish the
sending and receiving processors).

in in
out

out

x
y

co

p0 p1 p2

Architecture

Figure 29 Basic architecture form

Common Coordinator Class

The three different coordinators we will discuss are derived from a common
Coord class, which is itself, derived from the simple processor, proc.

Multi-Processor Architectures

 101

in
outCoord

x
y

Figure 30 Common coordinator structure

public class Coord extends proc{

public Coord(String name){
 super(name,1);
 addInport("setup");
 addInport("x");
 addOutport("y");
 phases.add("send_out");
 phases.add("send_y");
}

public void initialize(){
 passivate();
 super.initialize();;
 }

protected void add_procs(devs p){ //use devs for signature
System.out.println("Default in Coord is being used");
}
}

The add_procs method will be supplied by the derived coordinator classes. It
serves to add information about new processors to the coordinator as they
added to the coupled at the same time. This illustrates the use of inheritance
and polymorphism to reduce the code that has to be developed and to
provide a common framework for all the coordinators.

Chapter 7

 102

In the following we’ll discuss the following in detail:

Atomic model I/O Behavior Description

divide and
conquer
coordinator

breaks incoming jobs into parts for
processing and compiles the results into a
final output

pipeline
coordinator

routes incoming jobs through a series of
processing states and outputs the results

Multiserver
coordinator

routes incoming jobs for processing and
collects the results for final output

Coupled model

divide and
conquer

divide and conquer coordinator with
processors

Pipeline pipeline coordinator with processors

Multiserver multiserver coordinator with processors

Divide and Conquer

The divide and conquer architecture is the simplest so we start with it.

Multi-Processor Architectures

 103

Divide and Conquer Coordinator

in
outdivideCoord

x
y

num_procs num_results

Figure 31 Coordinator of divide and conquer architecture

public class divideCoord extends Coord{

int num_procs, num_results;

public divideCoord(String name){
super(name);
num_procs = 0;
num_results = 0;
}

protected void add_procs (devs p){
num_procs++;
num_results++;
}

public void deltext(int e,message x)
{
Continue(e);

if (phaseIs("passive"))
{
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"in",i))
 {
 job = x.getValOnPort("in",i);
 num_results = num_procs;
 holdIn("send_y",0);

Chapter 7

 104

 }

}
// job pairs returned on port x

else if (phaseIs("busy")){
 for (int i=0; i< x.getLength();i++)
if (messageOnPort(x,"x",i))
{
 num_results--;
 if (num_results == 0)
 holdIn("send_out",0);
 }
}
}

public void deltint()
{
if (phaseIs("send_y"))
 passivateIn("busy");
else passivate();
}

public message out()
{
message m = new message();
if (phaseIs("send_out"))
 m.add(makeContent("out",job));
else if (phaseIs("send_y")){
 m.add(makeContent("y",job);
}
return m;
})

public class DandC3 extends digraph{

public DandC3()
{
 super("d&c3");
 make(60,3);
}

 private void make(int proc_time){

 divideCoord co = new divideCoord("D&Cco");
 add(co);

 AddCoupling(this, "in", co, "in");
 AddCoupling(co,"out",this,"out");

 proc p1 = new proc("proc1", proc_time/size);
 proc p2 = new proc("proc2", proc_time/size);
 proc p3 = new proc("proc3", proc_time/size);

 add(p1);
 add(p2);
 add(p3);

Multi-Processor Architectures

 105

 co.add_procs(p1);
 co.add_procs(p2);
 co.add_procs(p3);

 AddCoupling(co, "y", p1,"in");
 AddCoupling(p1,"out",co,"x");
 AddCoupling(co, "y", p2,"in");
 AddCoupling(p2,"out",co,"x");
 AddCoupling(co, "y", p3,"in");
 AddCoupling(p3,"out",co,"x");

initialize();
}
}

Divide and Conquer Architecture

Behavior of Divide and Conquer Architecture

Let us trace a typical state trajectory to illustrate the operation of the divide
and conquer architecture. We start in an initial state in which the coordinator
and all subordinate processors are idle. In the experimental frame discussed
earlier, problems will arrive on port “in” of divideCoord from the generator.
Solved problems will leave on port “out” for the transducer. A typical state
trajectory for the divide and conquer architecture is shown in Figure 32. You
will see that the three processors act in effect, as one stage in the sequence
from input to output. This is so since to accept a new job divideCoord requires
that all processors have finished the subtasks of the current job. Since they
are processed concurrently, the time to solve all subtasks is the time taken to
finish the longest one.

Chapter 7

 106

P0

j1

j10

P1

P2

j11

j12

X

j1
Y

j2

j20

j21

j22

j2

Figure 32: State trajectory of divide and conquer

Pipeline

Pipeline Coordinator

As described in Figure 33 the pipeline coordinator is a router that takes jobs
arriving at one input port and sends them to another output port.

in out
pipeCoord

x0

jobs

x1

x2

y0

y1

y2

Figure 33: Coordinator of pipeline architecture

Multi-Processor Architectures

 107

public class pipeCoord extends Coord{

protected queue jobs;
protected proc pcur,pfirst;
protected function next; //represents the route

public pipeCoord(String name){
super(name);
next = new function();
jobs = new queue();
phases.add("send_first");
}

protected void add_procs(devs p){
 if (next.empty())
 pfirst = (proc)p;
 else next.replace(pcur,p);
 next.add(p,new proc("null",100));
 pcur = (proc)p;
}

nameGen n = new nameGen();

public void deltext(double e,message x)
{

Continue(e);

if (phaseIs("passive"))
{
 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"in",i))
 {
 job = x.getValOnPort("in",i);
 pcur = pfirst;
 holdIn("send_first",0);
 }
}
// (proc,job) pairs returned on port x
//always accept so that no processor is lost

 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"x",i))
 {
 entity val = x.getValOnPort("x",i);
 jobs.add(val);
 }
 //output completed jobs at earliest opportunity
 if (phaseIs("passive") && !jobs.empty())
 {
 holdIn("send_y",0);
 }
}

public void deltint()
{
if (phaseIs("send_y"))
{
 jobs = new queue();
 passivate();

Chapter 7

 108

}
 //output completed jobs at earliest opportunity

else if (phaseIs("send_first") && !jobs.empty())
 holdIn("send_y",0);
else passivate();
}

public message out()
{
message m = new message();
 if (phaseIs("send_first"))
 m.add(makeContent("y",new pair(pcur,job)));
else if (phaseIs("send_y"))
 for (int i= 0; i< jobs.getLength();i++)
 {
 entity val = jobs.list_ref(i);
 pair pr = (pair)val;
 entity p_return = pr.getKey();
 proc pnext = ((proc)(next.assoc(p_return.getName())));
 entity jb = pr.getValue();
 if (!pnext.eq("null"))
 m.add(makeContent("y",new pair(pnext,jb)));
 else
 m.add(makeContent("out",jb));
 }
return m;
}
}

Multi-Processor Architectures

 109

Pipeline Architecture

in in
out

out

x0
y0

pipeCoord

p0 p1 p2

Pipeline Architecture (pipe3)

x2
y2

Figure 34 Pipeline architecture

Figure 35 displays a typical state trajectory for the pipeline architecture. Note
the progress of jobs through the successive stages of the pipeline. Clearly,
the turnaround time is sum of the processing times a job encounters. How
soon can job J2 arrive after J1 and not be lost? Let T be the time separating
their arrivals. So long as J2 encounters only idle processors, this time
difference is preserved as J2 follows J1 through the system. However, if T is
smaller than some processing time, Pi then Pi will be busy with J1 when J2
arrives. Said another way, the maximum throughput is the rate at which jobs
can emerge from the slowest, or bottleneck processor. Jobs emerging from a
faster processor upstream of the bottleneck will eventually encounter the
bottleneck; a faster processor downstream can only get its input at the rate
emerging from the bottleneck. Since max {Pi} is the largest processing time,
its inverse is the maximum throughput as in Table 1.

Consider the problem: minimize max {Pi} subject to ∑ PI = P. The answer is P
/n as can be shown by induction on n. This means that the best partitioning of
a job for pipeline processing with n stages occurs when each stage takes the
same time, P /n.

Chapter 7

 110

Behavior of Pipeline

Figure 35 Pipeline time segments

public class pipeLine extends digraph{

public pipeLine(String name,double proc_time,int size)
{
 super(name);
 make(proc_time,size);
}

 private void make(double proc_time,int size){
 pipeCoord co = new pipeCoord("PipeCo");
 add(co);

 AddCoupling(this, "in", co, "in");
 AddCoupling(co,"out",this,"out");

 for (int i = 1; i <= size; i++){
 proc p = new procName("proc" + i, proc_time/size);
 add(p);
 co.add_procs(p);
 }

for (entity p = getComponents().get_head();p != null;p =
p.get_right()) {
 entity ent = p.get_ent();
 devs comp = (devs)ent;
 if (!ent.equal(co))
 {
 AddCoupling(co, "y", comp,"inName"); //use name for routing
 AddCoupling(comp,"outName",co,"x");

Multi-Processor Architectures

 111

 }
 }
initialize();
}
}

Multiserver

Multiserver Coordinator

As described in Figure 36, the coordinator, multiCoord keeps track of the status
of its processors a list called busyProcs. A job arrives at the input port “in”
and is routed to the first passive processor by being sent out on a
corresponding to an output port, “xi“. If no processor is free, the job is lost.
When a completed job returns on corresponding ports, “yi“. Then multiCoord
re-routes it to the output port “out.”

in out
multiServerCoord

x0

jobs

x1

x2

y0

y1

y2busyProcs outport

Figure 36 Coordinator of multi-server architecture

protected void add_procs(devs p){
procs.add(p);
}

public void deltext(double e,message x)
{
Continue(e);
if (phaseIs("passive"))
{
 yMessage = new message();
 for (int i=0; i< x.getLength();i++)

Chapter 7

 112

 if (messageOnPort(x,"in",i))
 {
 job = x.getValOnPort("in",i);
 if (!procs.empty())
 {
 entity pcur = procs.front();
 procs.remove();
 yMessage.add(makeContent("y",new pair(pcur,job)));
 holdIn("send_y",0);
 }
 }
}
// (proc,job) pairs returned on port x
//always accept so that no processor is lost

 for (int i=0; i< x.getLength();i++)
 if (messageOnPort(x,"x",i))
 {
 entity val = x.getValOnPort("x",i);
 pair pr = (pair)val;
 procs.add(pr.getKey());
 entity jb = pr.getValue();
 jobs.add(jb);
 }
 //output completed jobs at earliest opportunity
 if (phaseIs("passive") && !jobs.empty())
 holdIn("send_out",0);
}

public void deltint()
{
if (phaseIs("send_out"))
{
 jobs = new queue();
 passivate();
}
//output completed jobs at earliest opportunity
else if (phaseIs("send_y") && !jobs.empty())
 holdIn("send_out",0);
else passivate();
}

public message out()
{
message m = new message();
 if (phaseIs("send_out"))
 for (int i= 0; i< jobs.getLength();i++)
 {
 entity job = jobs.list_ref(i);
 m.add(makeContent("out",job));
 }
else
 if (phaseIs("send_y"))
 m = yMessage;
return m;
}
}

Multi-Processor Architectures

 113

Multiserver Architecture

The coupling of the multiserver architecture follows exactly the form of the
pipeline architecture with replacement the corresponding coordinator of the
processors. Specifying the digraph model is therefore a straightforward
revision.

public class multiServer extends digraph{

public multiServer(String name,double proc_time,int size)
{
 super(name);
make(proc_time,size);
}

 private void make(double proc_time,int size){

 multiServerCoord co = new multiServerCoord("MultiSco");
 add(co);

 for (int i = 1; i <= size; i++){
 proc p = new procName("proc" + i, proc_time);
 add(p);
 co.add_procs(p);
 }

 for (entity p = getComponents().get_head();p != null;p =
p.get_right()) {
 entity ent = p.get_ent();
 devs comp = (devs)ent;
 if (!ent.equal(co))
 {
 AddCoupling(co, "y", comp,"inName"); //use name for routing
 AddCoupling(comp,"outName",co,"x");
 }

 }
 AddCoupling(this,"in",co,"in");
 AddCoupling(co,"out",this,"out");

 initialize();
 }
 }

Chapter 7

 114

Behavior of Multiserver

(in, J1)X

P1

P2

P3

Y

(in, J2) (in, J3) (in, J4)

p

busy(J1)

busy(J3)

busy(J2)

busy(J4)

(out, J1) (out, J3)(out, J2)

tinitial tfinal

Figure 37: Multiserver time segment

Following the course of the first job arrival, J1, on port “in” of
MULTISERVER, the external input coupling scheme will send J1 to port 'in of
the coordinator, MULTISERVERCOORD. Having received J1 and being passive,
MULTISERVERCOORD goes into state BUSY (dictated by its external transition
function). After waiting there for a very short time (actually zero), the
coordinator puts J1 broadcasts to all processors on the pair (J1, P1). This is
dictated by the output function and the coupling of the port “y” to all
“inName” ports of the subordinate processors. The coordinator immediately
returns to the passive phase (due to the internal transition function). Since
P1matches the name on the pair (recall the processor with inName port of
Chapter 5) and is idle, it accepts the job and enters the “ busy” phase for a
time given by its processing time parameter. Let P represent the value of
the processing time. For simplicity in the sequel, we shall assume that P is a
constant and the same for all processors. After time P has elapsed, P1 will
place J1 on port “out.” The external output coupling now determines that J1
appears on port “out” of MULTISERVER and leaves the architecture as a
processed job as illustrated in Figure 37.

Now let a second job, J2, arrive T time units after J1's arrival. If T is bigger
than P, then P1 will be passive by the time J2 arrives and will be able to start
processing it. However, if T is smaller than P, then P1 will be busy when J2
arrives. Rather than losing J2 as was the case for the simple processor, here
the multi-server coordinator comes into play. Knowing that P1 is busy,

Multi-Processor Architectures

 115

MULTISERVERCOORD sends J2 to the next free processor, P2 using the
name-directed broadcasting just discussed.

For simplicity, assume that there are 3 processors. Then a third job, J3,
arriving while both P1 and P2 are busy, will be sent to P3. However, a fourth
job that arrives while all processors are busy will be lost. As illustrated in
Figure 37, if the job inter-arrival-time, T, is a constant, equal to P /3, then the
fourth and subsequent jobs arrive just after a (exactly one) processor has
finished its work. The figure makes clear that this is an arrival pattern in
which processors are always kept busy. The emerging jobs are separated in
time by P /3 so that the throughput is 3/P. Since the processors are always
kept busy, there is no way to produce a higher rate of job completions. Thus
we can justify the entry for the multi-server architecture with constant
processing time in Table 2. Clearly, each job still takes time P units to be
processed, so that the average turnaround time is P.

In the case of heterogeneous processing times, {Pi}, the fastest that each
processor, Pi can emit jobs is at rate 1/min {Pi}. The maximum throughput
is the sum of these rates. The average turnaround time associated with this
departure rate can be obtained by considering the mix of jobs at any time.
The number of jobs processed in a long period is proportional to
1/throughput. Of these, there are 1/Pi jobs in the ith processor and these
take time Pi to complete, yielding the average contribution of the ith
processor of Pi * 1/(Pi*throughput) which equals 1/throughput. For n
processors, the average turnaround time is therefore n/throughput. This
accounts for the corresponding entry in Table 2.

The same result can be derived from Little's relation (Sauer and Chandy 80):
The average turnaround time = the average number of jobs in the system /
the job departure rate

Note that Little's formula relates the three performance indexes, work in
process (jobs in the system), throughput and turnaround time. It claims that
usually the latter are inverses of each other, just as intuition would have us
imagine. However, it holds only for certain kinds of systems in which jobs are
distributed uniformly around the processors at all times.

Chapter 7

 116

Turnaround Time and Throughput Relations for Series and
Parallel Systems

max thruput <= min(max thru_S1,max thru_S2)

S1 S2

TA = TA_S1 + TA_S2

max thruput <= max thru_S1 + max thru_S2

S1

S2

TA = p*TA_S1 + (1-p)*TA_S2

p

1-p

Figure 38 Performance of cascade systems

Families of Models

Structural Inheritance

Inheritance, as provided by object-oriented languages such as JAVA, enables
construction of chains of derivations forming class inheritance hierarchies.
This means that DEVSJAVA supports not just immediate derivation from
classes atomic and coupled, but also derivation of new model classes from
those already defined. This is called structural inheritance because structure
definitions, such as ports in atomic models and couplings in coupled models
can be reused, and even modified, thus exploiting the polymorphism of
object-orientation.

Range Inclusion Constraints on Coupling

Recall that the range inclusion constraints on coupling assure that any source-
generated value can be properly interpreted by the receiving component. In
DEVSJAVA, such values are instances of classes derived from class entity.
Since such objects must be manipulated by the receiver, the constraints
translate into the requirement that any method that the receiver can apply
any method it needs to to the instances. As illustrated in Figure 39, classes
may be associated with ports. Associating a class c with output port p,
indicates that values in contents of messages sent on port p are instances of
class c. Similarly, associating a class with an input port means that the
receiver expects to treat values arriving on this port as instances of this class.

Multi-Processor Architectures

 117

(port0,

c1c0

coupling: (c0,port0,c1,port1)

class0)

entity

text

(port1,
class1)

entity

class0
class1

document

image

get_name()

get_date()

get_char() decode()

Figure 39 Constraints on coupled port classses

Thus, we can couple an output port port0 with class0 to an input port port1
with class1 if every method in class1 is also in class0. Typically this is
guaranteed by inheritance from class1 to class0 (yes, this is the right
direction!). For example in Java, this is satisfied if class0 is derived from
class1 and the methods are public. As an important special case, the
requirements are satisfied if class0 and class1 are actually the same class.
The following table lists all admissible combinations for the inhertance
hierarchy in Figure 39. For example, if the receiver expects an entity than
any of the derived class instances can be sent to it. If class1 is document than
class0 can’t be entity, but can be document or its derived classes. Finally, if
the receiver expects a text than only a text instance can be sent to it.

sender
class0

receiver
class1

some applicable
methods at receiver

some methods not
applicable at receiver

entity entity getName()

document entity getName() get_date()

image entity getName() decode()

text entity getName() get_char()

document document get_date() get_char(),decode()

image document get_date() decode()

text document get_date() get_char()

image image decode() get_char()

text text get_char() decode()

Chapter 7

 118

Homogeneous Coupled Models

Summary

Exercises

Exercise 1:

Part a) Implement and test the Switch atomic model.

Part b) Implement the Switch Network coupled model.

Part c) Implement a coupled model in which an instance of class genr sends
inputs, called packets, to the Switch Network in b).

In each case, write a model in DEVSJAVA and test your model using the
appropriate atomic or coupled applet.

Part d) Using the formula in Figure 40 develop a formula for the maximum
throughput and turnaround time for the system in c), assuming the same
times for the processors.

public class multiEnt extends digraph{

public multiEnt(String name,int size)
{
 super(name + "s");
 Class cl = Class.forName(className);
 for (int i = 1; i <= size; i++){
 Object o = cl.newInstance();
 devs d = (devs)o;
 d.set_name(className + i);
 add(d);
}

 inports = d.get_inports();
 outports = d.get_outports();

 for (entity p = getComponents().get_head();p != null;p =
p.get_right()) {
 entity ent = p.get_ent();
 devs comp = (devs)ent;
 pair pr = (pair)get_inports().get_head();
 for (int i = 0;
 i < get_inports().getLength(); i++){
 entity pt= pr.getKey();
 AddCoupling(this, pt.getName(), comp, pt.getName());
 pr = (pair)pr.get_right();
 }
 pr = (pair)get_outports().get_head();
 for (int i = 0;
 i < get_inports().getLength(); i++){
 entity pt= pr.getKey();
 AddCoupling(comp, pt.getName(),this, pt.getName());
 pr = (pair)pr.get_right();
 }
 }
}

Multi-Processor Architectures

 119

max thruput = min(max thru_SW,max thru_MP)

SW
mulProcs

 = min(1/tSW,2/tP)
 = 1/max(tSW,tP/2)

TA = tSW + tP

Figure 40 Performance of switching system

Exercise 2: Examine each of the entries in Table 2. Which ones satisfy
Little’s relation. Which do not?

Exercise 3: Show that in the heterogeneous case as we add processors, the
maximum throughput increases but the average turnaround time decreases.

Exercise 4: Define a class of “balking” processors in which a job is sent out
immediately on a “balk” port if it cannot be processed upon arrival. Rewrite
this class as a subclass of class processor and assess the extent to which code
is reusable.

Exercise 5: Derive a class from pipeSimple in which the components are
“balking” processors and whose “balk” ports are coupled to a “balk” external
output port. Assess the reusability of code and the ease or difficulty in
achieving such reuse.

Exercise 6: A SwitchNetwork coupled model is shown below with
components that are Switches slightly modified as follows to represent
commonly used packet-switches. Packet-switch networks often use the store-
and-forward strategy – each node receives a packet on a known port (link),
stores the packet in its internal memory, and finally, forwards the stored
packet to the next node.

Chapter 7

 120

Implement and test the SwitchNetwork coupled model (SN.java). As before a
Switch (PacketSwitch.java) is assumed to have two input and two output
ports. With the switch in its standard position, packets arriving on port “in”
and “in1” are sent out on port “out” and “out1” respectively. When the switch
is in its opposite setting, the input-to-output mappings are reversed – what
comes in on port “in” goes out at port “out1” and vice versa.

However, now each input packet is a triple (data, toggleSwitch, numHops).
The first item in the triple represents the data (i.e., any integer value). The
second item can toggle the setting of the switch: it can be either “true” or
“false” – “true” toggles the state of the switch and “false” has no effect.
When a packet leaves a switch its toggleSwitch is set to “false” or “true” with
equal probability. (Look at genrRand in the Simparc package for how to do
this.) The third item keeps track of the number of switches (hops) that the
packet has traversed so far. If a packet arrives at a switch with the numHops
equal to 5 it is abandoned (not sent out). Assume that a packet takes 10 time
units to be processed by a switch.

Implement and test a SwitchNetworkExpFrame coupled model (SNEF.java). It
consists of the SwitchNetwork (SN.java) and an Experimental Frame
(EF.java). The packet-generator (PacketGenr.java) of the EF sends inputs
(packets) to the SwitchNetwork (SN.java) and the packet-transducer
(PacketTransd.java) collects the output packets of the network. It creates a
table (e.g., a function container) with pairs of the form (i, number of packets
taking i hops) and can print that table as well as the average number of hops
taken. It can also print the number of packets that have entered the network
but not yet emerged. After its observation time, the transducer stops the
generator and continues to process packets as they emerge from the
network. It then prints its final output: hops table, average hops, and
percentage of lost packets (where a packet is lost if it arrives while a switch is
busy or if it is put on an output port which is not connected (directly or
indirectly) to the final output or is abandoned).

Hand in a zip file containing your files, timing diagrams of test input, state,
and output trajectories, and the results of two runs, both with transducer

Multi-Processor Architectures

 121

observation time equal to 1000. In the first, the generator outputs packets
each 10 units; in the second each 5 units. The toggleSwitch item in the triple
message output by the generator is set to “false” or “true” with equal
probability and is used to set the toggleSwitch setting of the S0 switch.

Solution

Additional Assumptions:

q Generator is assumed to produce new packets with its switch setting
equal to false and initial number of hops set to zero.

q PacketSwitch determines whether an incoming packet is to be sent to
any other PacketSwitch or not depending on a selected probability
setting.

q PacketSwitch can only receive only one input packet and transmitting
it to another depending on the input port. Note that Generator
produces one packet at a time and PacketSwitch outputs at most one
packet at a time.

q All probabilities used are 50% with uniform distribution.

q A packet can take at most 60 units of time (maximum number of hops
is 5) before it exists the SwitchNetwork; otherwise it is lost. This upper
limit is included to ensure that the last packet entering the
SwitchNetwork can be accounted for if indeed it is allowed to exist.

Models:

EF.java

packet.java

PacketGenr.java

PacketTransd.java

PacketSwitch.java

SN.java

SNEF.java

Simulation Results:

Simulation Run #1-1:

Generator:

Produces jobs every 10 units of time

Transducer:

Observation Period: 1060 units of time

packets arrived: 101

packets transmitted: 10

Avg. num. of hops: 3.3

Percentage of packets lost: 90.0%

Chapter 7

 122

P3,7

P4,3

P5,0

P2,0

P1,0

Simulation Run #1-2:

Generator:

Produces jobs every 10 units of time

Transducer:

packets arrived: 101

packets transmitted: 7

Avg. num. of hops: 3.7142857142857144

Percentage of packets lost: 93.0%

P4,5

P3,2

P5,0

P2,0

P1,0

Simulation Run #2-1:

Generator:

Produces jobs every 5 units of time

Transducer:

Observation Period: 1060 units of time

packets arrived: 201

packets transmitted: 15

Avg. num. of hops: 3.6666666666666665

Percentage of packets lost: 92.0%

P5,2

P3,7

P4,6

P2,0

P1,0

Simulation Run #2-2:

Generator:

Produces jobs every 5 units of time

Multi-Processor Architectures

 123

Transducer:

Observation Period: 1060 units of time

packets arrived: 201

packets transmitted: 12

Avg. num. of hops: 3.25

Percentage of packets lost: 94.0%

P3,10

P4,1

P5,1

P2,0

P1,0

Exercise 7: Consider a real world system in which there are vehicles and
their owners and a repair shop employing a single mechanic. The mechanic
receives a vehicle for repair from its owner. He gives the customer estimates
for repair cost and delivery date. However, halfway through the course of
repair, the mechanic may find out that the cost of repair will be greater than
he had estimated (e.g., twice the original estimate). In this case, the
mechanic will have to notify the client about the additional cost and estimated
time to complete the repair. He stops working on the repair. Once the client
agrees to pay the higher amount, the repair will continue with a new delivery
date. The new delivery date can be sooner or later than the original date. In
the following, be sure to give any assumptions you make.

q Suppose the mechanic can only repair one car at a time. That is the
mechanic will not start repair of another car until the current repair is
completed. Cars that arrive while the mechanic is busy try to come
back later or go to another repair shop. Develop an atomic DEVS
model (pseudo form or Java code) for this repair shop with timing
diagrams depicting key input, output, and state transitions.

q Consider the case where the repair shop employs several mechanics.
Consider three repair shop architectures, based on multi-server,
pipeline, and divide-and-conquer, by which the shop manager can
distribute incoming repair requests (in this case, you can assume the
shop manager always gets the estimated time and cost correct the
first time). There can be mechanics, which are generalists or
specialists. For example, a mechanic’s specialty might be in engine
repair or electrical system repair. Also assume that the shop manager
first analyzes the car’s problems and writes a repair order that can
consist of a number of tasks (e.g., replace fuel control and replace
electrical wiring).

For each of the three cases, draw a diagram of the coupled model and
provide a paragraph description of how the architecture works (no code or
pseudo code is required)

Chapter 7

 124

q Assume that repair orders always consist of an oil change, a filter
replacement, and an interior cleaning, taking 15 min, 2 min, and 30
min respectively. It takes 5 min to analyze the car’s problems and all
other times can be considered to be zero. What are the largest
possible throughputs of each of the architectures?

Exercise 8: Consider a four-way traffic intersection. Common traffic flow
rules are assumed, however cars are not allowed to make left turns (see
figure below.). (Common rules include: cars can go only forward! The road is
divided into two (left and right) lanes to allow concurrent movement of cars in
opposite directions and a lane can only hold one car travelling in its direction).
For simplicity, assume that cars pause at an imaginary stop sign to check the
traffic light before proceeding.

 OK on GL

¬OK

OK on GL

GL: Green Light
RL: Red Light

OK on GLOK on GL:
empty circles represent
cars that can go
through the intersection
(green traffic light)

¬OK:
filled circles represent
cars that CANNOT go through
intersection (red traffic light)

East/West Bound

West/East Bound

North/South Bound

South/North Bound

Write a Parallel DEVS “intersection” atomic model (pseudo form or Java
code), which receives inputs representing arrivals of cars at the four stop
signs of the intersection. When they arrive, cars state their intentions
(straight ahead or right turn) and the intersection model allows them to pass
through (taking 10 seconds) and appear at the output ports associated with
the desired outbound directions in accordance with the traffic laws just stated.
The model includes queues to represent cars that have arrived and are
waiting to proceed through the intersection.

Exercise 9: Consider a DEVS representation of a class of discrete time
models. In this particular class all atomic models have a time advance that
can be only 1 or infinity. Except for the restrictions on time advance values,

Multi-Processor Architectures

 125

such models follow the usual parallel DEVS conventions. In particular they can
produce output messages, which may or may not be null. In a coupled model
containing these models as components, the normal coupling rules apply so
that components can get inputs from a subset (possibly empty) of other
components. We’ll restrict attention to coupled models that have no external
input ports and which initialize their components so that their elapsed times
are zero.

q An example of such an atomic model is the following. It can receive
any number of real valued inputs on its input port “in”. No matter what
its current state is, when it receives a bag of such inputs, it takes their
average. If the average is less than 1, it passivates. Otherwise, it
outputs the average after 1 time unit on port “out”, and if no input is
received at that time, it passivates. In either mathematical form or
pseudo code, write a parallel atomic DEVS model for this example.

q Using the standard Parallel DEVS simulation protocol, describe the
exact conditions under which the internal, external and confluent
transition functions of the components are applied in a simulations of
coupled models with components described in a).

q Consider coupled models of components of the discrete time class
described above (of which those in a) are special cases). Assume the
number of components is very large and the maximum number of
influencees of any component (the possible receivers of its output) is
very much smaller. Develop an optimization of the standard Parallel
DEVS simulation protocol that allows the coordinator to use its
knowledge of the restricted time advances and the model coupling
information to reduce the number of messages it exchanges with the
simulators of the components. Your algorithms for coordinator and
simulator can be given in any convenient form. Explain where your
version provides the savings in messages in comparison to the
standard protocol.

Solution

5b) Conditions under which the transition functions are applied.

 The “status” of any discrete time model in state s can be defined as
follows:

 “active” if ta(s) = 1
 “passive” if ta(s) = infinity.

Note that “status” can always be defined independently of what the phase is.

Now if the “status” is “passive” and input is not null then apply external
transition fn

 if the “status” is “active” and input is null then apply internal
transition fn

 if the “status” is “active” and input is not null then apply confluent
transition fn

Chapter 7

 126

5c) Parallel DEVS Protocol for discrete time models

Coordinator sends nextTN to request tN from each of the simulators.

All the simulators reply with their tNs in the outTN message to the coordinator

Coordinator sets activeList = {simulators for which tN = 1} (these are the
imminents)

Coordinator sends to each simulator in activeList a getOut message and waits
for all outputs to return

Coordinator extends activeList by including all influencees of members already
in activeList (obtained from coupling)

Coordinator uses the coupling specification to distribute the outputs as inputs
in an applyDelt message to the simulators in the activeList

Coordinator waits for all simulators in activeList to return with their next
outputs

Coordinator sets activeList = {simulators for which output is not null}(these
are the imminents)

If activeList is not empty, Coordinator passivates, else goes to step 5.

Comments:

q The only time the coordinator needs to get tNs from the simulators is
initially (to determine the initial imminents). Here we save on nextTN
and outTN messages each cycle

q The only time the coordinator needs to send a getOut message is
initially to get the outputs from the imminents. Here we save on
getOut messages each cycle.

q Once it knows the outputs of the imminents, the coordinator can
determine their influencees and what they should receive as input
(using the coupling). This adds to the activeList in step 5.

q We still need an applyDelt message containing input each cycle but
this needs to be sent only to the activeList – by what’s given in the
problem statement, the activeList should always be quite small relative
to the full set of components

q We modify the simulator’s response to an applyDelt so that it returns
its model’s next output – after its applyDelt, a simulator will either be
passive (have tN = infinity) or active (tN = tN +1); if it is active it can
go ahead and compute the models next output.

The messages required after the initial setup cycle are:

Coordinator sends applyDelt to the activeList

Simulators in activeList send output in response to applyDelt

To reduce such messaging, the coordinator needs to maintain the activeList –
which it does not need to do in the standard protocol.

Multi-Processor Architectures

 127

Exercise 10: Consider Divide&Conquer architecture discussed in lecture and
described in the text. Suppose three processors P1, P2, P3 are available to
process three pieces (job1,p1, job1,p2, and job1,p3) of an incoming job (job1).

(a) Extend the Divide&Conquer model (call it D&Cext) so that it breaks an
incoming job (jobj, unsolved) into parts (jobj,p1, jobj,p2, and jobj,p3) and assembles
them upon their completion (jobj, solved). Assume some none-zero processing
time (td) is required to break a job into parts and similarly some none-zero
processing time is needed (ta) to assemble the individually solved pieces
together. Specify D&Cext model (i.e., determine all components (parent and
children) and couplings). You can draw the D&Cext digraph model – that is
draw components, ports, and couplings and specify their names.
Alternatively, you may use mathematical or pseudo notation.

(b) Determine theoretical turn around time and throughput for D&Cext
architecture assuming incoming jobs can be equally divided into three pieces
and the three P1, P2, and P3 can process their jobs using exactly the same time
period.

(c) Determine whether it is possible for D&Cext model to have worse turn
around time and/or worse throughput compared with a single processor.
Explain and quantify your answer.

Exercise 11: Consider a real world system in which there are vehicles and
their owners and a repair shop employing a single mechanic. The mechanic
receives a vehicle for repair from its owner. He gives the customer estimates
for repair cost and delivery date. However, halfway through the course of
repair, the mechanic may find out that the cost of repair will be greater than
he had estimated (e.g., twice the original estimate). In this case, the
mechanic will have to notify the client about the additional cost and estimated
time to complete the repair. He stops working on the repair. Once the client
agrees to pay the higher amount, the repair will continue with a new delivery
date. The new delivery date can be sooner or later than the original date. In
the following, be sure to give any assumptions you make.

Suppose the mechanic can only repair one car at a time. That is the mechanic
will not start repair of another car until the current repair is completed. Cars
that arrive while the mechanic is busy try to come back later or go to another
repair shop. Develop an atomic DEVS model (pseudo form or Java code) for
this repair shop with timing diagrams depicting key input, output, and state
transitions.

Consider the case where the repair shop employs several mechanics.
Consider three repair shop architectures, based on multi-server, pipeline, and
divide-and-conquer, by which the shop manager can distribute incoming
repair requests (in this case, you can assume the shop manager always gets
the estimated time and cost correct the first time). There can be mechanics
which are generalists or specialists. For example, a mechanic’s specialty
might be in engine repair or electrical system repair. Also assume that the
shop manager first analyzes the car’s problems and writes a repair order that
can consist of a number of tasks (e.g., replace fuel control and replace
electrical wiring).

For each of the three cases, draw a diagram of the coupled model and
provide a paragraph description of how the architecture works (no code or
pseudo code is required)

Chapter 7

 128

Assume that repair orders always consist of an oil change, a filter
replacement, and an interior cleaning, taking 15 min, 2 min, and 30 min
respectively. It takes 5 min to analyze the car’s problems and all other times
can be considered to be zero. What are the largest possible throughputs of
each of the architectures?

Chapter 8

SYSTEM ENTITY STRUCTURE

Simulation-based systems design employs a plan-generate-evaluate process.
The plan phase organizes all the models of design alternatives within the
chosen system boundary and design objectives. The generate phase
synthesizes a candidate design model intended to meet the set of design
objectives. Finally, the evaluate phase evaluates behavior and/or performance
of the generated model through simulation using an appropriate experimental
frame derived from the design objectives. The overall design cycle repeats the
generation and evaluation phases until an acceptable design is found.

How can we organize a family of candidate models from which a candidate
model can be selected, generated and evaluated? This chapter presents the
systems entity structure/model base (SES/MB) framework for such an
organization. The idea is as follows. Let us first extract the hierarchical
composition structures of hierarchical, modular models from their
implementations. Then we save the structures and the implementations
separately in organized libraries. 0 shows the basic idea in which libraries for
model structures and model implementations are called system entity
structure base and model base, respectively. Our goal is to be able to
synthesize a simulation model by traversing a model hierarchical structure,
retrieving component implementations and coupling them together. As will
be seen later in this chapter, a system entity structure represents not a single
model structure, but a family of model structures, from which a candidate
structure called a pruned entity structure can be selected. Thus, the system-
entity-structure/model-base framework supports the plan-generate-evaluate
process in systems design.

Chapter 8

 130

ENTITY STRUCTURE BASE MODEL BASE

ABC

AB C

C2C1

AB

A B

A B C1 C2

ABC

CAB

Specification

Synthesis

components structure

……
……

C2
C1

……
……

B
A

< X,Y,S
δext, δint, λ, ta >

 structure components

Separate

Figure 41 System entity structure/model base concept

Model Base Management By System Entity Structure

A model base is an organized library of models that may be either atomic or
coupled. Models can be saved in the model base for later retrieval. Models so
retrieved may be reused to create more complex models. Thus, the model
base approach will improve the productivity of the modeling subtask in the
overall systems design process.

0 shows an approach to model base management that relies on the concept
of system entity structure to be explained in the next section. The behaviors
of primitive components of a real world system are specified by atomic
models and saved in the model base (0 (a)). The structural knowledge of the
system is represented as a system entity structure (0 (b)) by means of an
operation called entity structuring. The entity structure, here, serves as a
compact representation for organizing all possible hierarchical composition
structures of the system. This separation of model composition structures
from their behaviors may reduce the modeling complexity of real world
systems. Moreover, such separation allows designers to easily construct
candidate models with different structures while using the same components.
To construct a desired simulation model to meet design objectives, the
pruning operation is used to reduce the SES to a pruned entity structure, PES
(0 (c)). This pruned entity structure can be transformed into a composition
tree (0 (d)), and eventually synthesized into a simulation model (0 (e)) by
combining it with models in the model base. Such models are evaluated via
simulation to determine superior solutions to the design objectives.

System Entity Structure

 131

Figure 42 Model base management scheme (a) model base, (b)
system entity structure (SES), (c) pruned entity structure (PES), (d)

composition tree, (e) synthesized model.

Chapter 8

 132

System Entity Structure

The system entity structure formalism is a structural knowledge
representation scheme that systematically organizes a family of possible
structures of a system. Such a family characterizes decomposition, coupling,
and taxonomic relationships among entities. An entity represents a real world
object. The decomposition of an entity concerns how it may be broken down
into sub-entities. As discussed in Chapters 2 and 7, coupling specifications
tell how sub-entities may be coupled together to reconstitute the entity. The
taxonomic relationship concerns admissible variants of an entity.

As shown in Figure 43, an SES is represented as a labeled tree with attached
attributes that satisfies the following axioms:

q alternating entity/aspect or entity/specialization: Each node has a
mode that is either entity/aspect or entity/specialization such that a
node and its successors are always opposite modes; the mode of the
root is entity.

q uniformity: Any two nodes with the same names have identical
attached variable types and isomorphic sub-trees.

q strict hierarchy: No label appears more than once down any path of
the tree.

q valid brothers: No two brothers have the same label.

q attached variables: No two variable types attached to the same item
have the same name.

There are three types of nodes in the tree. An entity node, e.g., A in 0,
represents a real world object. There are two types of entity, namely
composite entity and atomic entity. A composite entity is defined in terms of
other entities (which may be either atomic or composite), while an atomic
entity can not broken down into sub-entities. Each entity may have attached
variables. It may also have several aspects and/or specializations. An aspect
node, like A-dec in 0, is connected by a single vertical line from a composite
entity. It represents one decomposition of the entity. The children of the
aspect are entities, distinct components of the decomposition. Associated with
each aspect is a coupling specification. A specialization node, e.g., B-spec in
0, is connected by a double vertical line from an entity. It defines the
taxonomy of the entity, and represents the way in which the entity can be
categorized into specialized entities. Selection rules may be associated with
each specialization, and guide the way in which a specialized entity is selected
in the pruning process. A selection constraint, depicted as dotted arrow from
an entity to other entities in 0, means that not all entities may be selected
independently. Once a specialized entity is chosen from a specialization, some
specialized entities in other specializations associated with the specialization
are also selected. The dotted arrows from B1 to D1 and G1 in 0 enforces the
following selection constraints: “if entity B1 is selected from specialization B-
spec then select entity D1 from specialization D-spec and entity G1 from
specialization G-spec.”

System Entity Structure

 133

Figure 43 A System entity structure

System Entity-Structure/Model-Base (SES/MB)
Framework

As we explained in a previous section, the SES/MB framework is a powerful
means to support the plan-generate-evaluate paradigm in systems design.
Within the framework, entity structures organize models in model base. Thus,
modeling activity within the framework consists of three sub-activities:
specification of model composition structure, specification of model behavior,
and synthesis of a simulation model.

Figure 44 shows a modeling and simulation methodology based on the
framework in the process of iterative systems design. In the figure, the
generation phase consists of two sub-phases: pruning and model synthesis.
The structure specification and/or the behavior specification may already exist
in the entity structure base and/or model base. However, if the structure
specification is not in the entity structure base, we need to specify it by
building a System Entity Structure, which represents a family of possible
model structures. Likewise, if the desired model components are not in the
model base, we need to develop them and store them in the model base for
later use. . In the pruning phase, we select a sub-structure by pruning the
SES with respect to design objectives. A simulation model is automatically
synthesized from such a pruned entity structure. Simulation experiments may
require changes of structure and/or behavior of the design model. The
pruning-synthesis-evaluation process is repeated until a desired design is
found. Once simulation experiments are completed, the designer can save
structure and behavior specifications in the system entity structure base and
the model base, respectively for later use.

Chapter 8

 134

Start

Design
model structure

in Entity
Structure ?

Design
model behavior

in
 Model Base?Specify all

models structure

Pruning by
design objectives

Completed?

Specify all
models behavior

Completed?

Design evaluation
by simulation

Design model
synthesis

no

yes

no

no

no

yes yes

yes

Find
desired
design?

Structure change Behavior change

yes

End

Figure 44 Design methodology using SES/MB frameworks

Example: Design of a transaction processing system

Let us exemplify SES/MB framework with the design of a transaction
processing system. As outlined in 0, the transaction manager, TM assigns
transactions requested by users to transaction processes. Each transaction
process, TP model represents a particular way of processing a transaction.
Once assigned a transaction, it works on it until the transaction is completed
or aborted. CPU and DISKS are resources that can be used when the
transactions are executed. CPU actually executes the operations of
transactions, and DISKS are used is to store databases. The concurrency
control, CC shares the resources among the transaction processes. There
are three kinds of concurrency control strategies. In two-phase locking, if a
lock request on an object is denied, then the requesting transaction is
blocked. In this strategy, a process may become part of a deadlock cycle. In
the immediate-restart strategy, if a lock request is denied then the requesting
transaction is aborted and restarted. In the optimistic strategy, transactions
are allowed to execute unhindered and are validated only after they have
reached their commit points. Notice that the two-phase and optimistic
strategies have counterparts in the distributed simulation protocols discussed
in (Chapter 11).

System Entity Structure

 135

Transactions request

CPU

DISK

CC

TM

TP0

TP1

TP2

TP(n-1)

TPS

...

Completed transactions

Figure 45 TPS overview

System Entity Structure

Let’s assume that the primitive models of the TPS are already developed and
stored in the model base. From these models, a configuration expert can
construct the SES, which organizes possible architecturs of the TPS and its
performance evaluation module. The root entity TPS_EXP is the top-level
entity to evaluate TPS architecture. It is composed of transaction processing
system (TPS) and experimental frame (EF). TPS is composed of TM for
transaction manager, TP for transaction processes, CC for concurrency
control, CPU, and DISKS. Using the cc-spec, the CC can be implemented with
the two-phase locking (Lock), the immediate-restart (Restart), or the
optimistic (Optimistic) algorithms. CPU is actually composed of Buff, which
stores the operations of transactions, and Proc, which actually executes the
operations. The Buff may be classified into two specialized types (FIFO, LIFO)
under the specialization buff-spec. And the Proc is also classified into high
performance processor (Hproc) and low performance one (Lproc). The TP can
be composed of several transaction processes from one (TP1) to 16 (TP16).
The DISKS may be configured with either one disk (disks-dec1) or two disks
(disks-dec2). Each disk also has a buffer. There are several attributes, such
as variables and couplings, attached to entities and aspects.

Chapter 8

 136

Figure 46 SES for TPS and its experimental frame.

Model Base

As shown in Figure 42 a), the model base is an organized library for
component models in modular form. Such component models can be either
atomic or coupled models specified in the DEVS formalism. Since the entity
structure of Figure 46 manages the component models in the model base,
there is a correspondence between entity names and model names. A simple
correspondence is that names of node entities are identical to names of the
corresponding models in the model base. In this case, names of atomic
models in the model base are labels of leaf nodes of type entity in the SES.
Care must be taken with coupled models, if any, in the model base, since
they represent already pruned structures. Thus, the name of a coupled model
also labels a corresponding entity in the SES that has children nodes of aspect
type − but there is no specialization type on any path from the node down to
the leaves.

Pruning and model synthesis

Once the TPS_EXP entity structure has been constructed, a designer can
explore alternative transaction processing architectures using the pruning
operation. Many alternatives may be extracted from the SES. Among the
alternatives, the most interesting ones arise from the CC and TP
specializations. Consider the following design objective:

“Find an optimal number of transaction processes and a best concurrency
control algorithm which give both high throughput and low response time.”

System Entity Structure

 137

The design objective requires us to construct several kind of simulation
models: each with different algorithm for concurrency control and with
different number of transaction processes. The number of transaction
processes puts a limit on the number of transactions allowed to be active at
any time. The table below shows an example of the pruning choices
consistent with the design objective. It selects the TP8 for the TP
specialization, the Lock for the CC specialization, and so on.

Entity Selection Input

TP tp-spec ? TP8

CC cc-spec ? Lock

Proc proc-spec ? Hproc

Buff buff-spec ? FIFO

DISKS aspect ? disks-dec1

GENR genr-spec ? HGENR

Pruning specification

A configuration expert who constructed the TPS entity structure may also
provide some facilities to help users generate good alternatives by
constraining the pruning process as mentioned earlier. Figure 47 shows an
example pruned entity structure. A simulation model can be synthesized by
retrieving component models from the model base, which correspond to
entities in the PES from the model base. Figure 48 shows the synthesized
model TPS_EXP from PES of Figure 47.

Figure 47 TPS pruned entity structure.

Chapter 8

 138

Figure 48 Synthesized simulation model for TPS evaluation.

Performance Evaluation

Once a simulation model is synthesized, performance evaluation can be
carried out via simulation experiments. Performance indices to be measured
in the experimental frame should be derived from the design objectives
(Chapter 2). Recall that our design objective was to find the optimal number
of transaction processes and a best concurrency control algorithm for both
high throughput and fast response time. Thus, our performance indices are
throughput and response time. These will be measured for different
concurrency control strategies as a function of number of concurrent
transaction processes. The model TRANSD (transducer) within the
experimental frame is already designed to measure such indices. The
simulation model in Figure 48 is used to evaluate the lock concurrency control
strategy with a maximum of eight transaction processes. For each alternative
concurrency control strategy, we provide a pruning specification of the form
shown in Table “Pruning Specification”. Each such specification generates a
corresponding PES, which automatically synthesizes an alternative simulation
model for performance evaluation. The pruning-synthesis-evaluation process
is repeated until an optimal number of transaction processes and a best
concurrency control strategy are found. If however, the process fails to
achieve the desired performance, the designer must return to the extent or
modify the SES/MB. For example, one can add alternatives under appropriate
specialization entities, while developing component models for such
alternatives and saving them in the model base. Thus, the plan-generation-
evaluation process in Figure 48 is repeated until the desired performance is
achieved.

System Entity Structure

 139

Automatic Pruning of an SES

Suppose that instead of having the user prune an SES for a desired model
structure, we provide an automatic means of iterating through all prunings.
Provided that the number of prunings is not too large, this would provide an
automated search capability for finding a best design. If the number of design
alternatives is too large for an exhaustive search, we have to turn to more
natural, and artificial, intelligence to constrain the search space. To provide
such search capability we need an algorithm that, given an SES, is capable of
computing its total number of prunings and iterating through them one-at-a-
time, each time synthesizing the associated hierarchical simulation model
from the model base and evaluating it. In the following we describe a design
of such an algorithm.

N1 Number
of

alternatives

NCountersMulti
Counter

N2 =
S1 + S2 + S3

N3

E-dec

S1 S2 S3

Entity E

E1 E2 E3

E2-Spec

Figure 49 Enumerating SES prunings

Recall that an SES is built recursively with alternating specializations and
decompositions. Likewise, the number of alternative prunings can be
enumerated and generated recursively. An nCounter (discussed in Chapter 4)
is used to iterate through the number of alternatives (n) at each
specialization. A multicounter, which is a serial composition (Chapter 5) of
nCounters, iterates through all alternatives under decomposition by stepping
its component nCounters through these alternatives one at a time. The
number of alternatives under decomposition is the product of the alternatives
under its entities. For example, there are nCounters for each of the subtrees
under E1, E2 and E3 under E-dec in 0. The multicounter under E-dec cycles
through a total of N1×N2×N3 alternatives. The number of alternatives under a
specialization is the sum of those under its entities. For example, the number
under E2-spec in 0 is S1+S2+S3. This recursion stops when leaf entities are

Chapter 8

 140

encountered. The number of alternatives represented by a leaf entity is just 1
(itself). Finally, the number of prunings of the SES is the number of
alternatives under the root node.

Implementation of the SES in DEVSJAVA

In DEVSJAVA the digraph class is extended to allow its elements to represent
alternatives in a specialization rather than components in a coupled model.
Thus, the implementation of the SES is an extension of the OODEVS classes
discussed earlier.

SpecializationDEVS

(),

, ,

, ,

, , ,{ | }, , ,N N N d N N N N N

d N d S

d N d S

N X Y D M d D EIC EOC IC

M M

M M

= ∈

=

∈

where

 {(,) | , }X p v p IPorts v Xp= ∈ ∈ is the set of input ports and values;

 {(,) | , }Y p v p OPorts v Yp= ∈ ∈ is the set of output ports and
values;

 D is the set of the component names;

 For each d D∈ , dM is a DEVS or a DEVSwithSpec having the same

input/output interface, i.e., {(,) | , }dX X p v p IPorts v Xp= = ∈ ∈ and

{(,) | , }dY Y p v p OPorts v Yp= = ∈ ∈ .

Note: we allow specDEVS to have specDEVS components as well, however,
such configurations can in principal be flattened to single level equivalents.

DEVSwithSpec

(), , ,{ | }, , ,N N dN X Y D M d D EIC EOC IC

S

= ∈

where

 {(,) | , }N NX p v p IPorts v Xp= ∈ ∈ is the set of input ports and values;

 {(,) | , }NY p v p OPorts v Yp= ∈ ∈ is the set of output ports and values;

 D is the set of the component names;

System Entity Structure

 141

 For each d D∈

 dM is a DEVS or a SpecializationDEVS

 ,EIC EOC and IC satisfy the coupling constraints of a DEVS coupled
model.

A DEVSwithSpec satisfies the coupling requirements but its
SpecializationDEVS

components must be replaced by regular DEVS components to yield a desired
model. This is formalized in the following:

Definition: A DEVSwithSpec,

(),, , ,{ | }, , ,S S S d S S S S SS X Y D M d D EIC EOC IC= ∈

is pruned to a DEVS, (),, , ,{ | }, , ,N N N d N N N N NN X Y D M d D EIC EOC IC= ∈

(alternatively, N is pruned from S) if

 , , , , ,N S N S N S N S N S N SX X Y Y D D EIC EIC EOC EOC IC IC= = = = = =

For each d ε D,

If ,d SM is a DEVS , then , ,d N d SM M=

If ,d SM is a SpecializationDEVS with only DEVS components , then

, ,d N d SM M∈

If ,d SM is a SpecializationDEVS with DEVSwithSpec components, then each

such component is pruned to a DEVS and , ,d N d SM M∈

Theorem: A DEVS pruned from a DEVSwithSpec with finite depth is a well-
defined coupled model.

Proof: The proof is by induction. There are two cases:

q (base case) A DEVSwithSpec that has only DEVS and
SpecializationDEVS components with all DEVS components. This is
pruned to a structure in which each of the SpecializationDEVS
components is replaced by DEVS with the same input/output port
structure. The component requirements for coupled DEVS are now
fulfilled while the coupling constraints that were imposed on the
DEVSwithSpec continue to hold in the pruned DEVS.

q (inductive step) A DEVSwithSpec that has a SpecializationDEVS with
DEVSwithSpec components has a finite depth (by assumption). It can
thus be handled by induction. At the lowest level, the DEVSwithSpec
has zero such components and prunes to a well-defined DEVS model
through the base case above. Assume that all DEVSwithSpec with
depth n prune to well-defined DEVS. Then all components of a
DEVSwithSpec of depth n+1 are either given as DEVS or prune to well-

Chapter 8

 142

defined DEVS by induction. Therefore after pruning, this structure
satisfies both the component and coupling requirements for well-
defined DEVS coupled models.

Examples of the SES in DEVSJAVA

We’ll consider the following examples:

DevsSpecialization Description

processor
specialization

simple processor with and without an input
buffer

multiple processor
specialization

selection of multiple processor homogeneous
coupled model with processor types as
kernel components

coordinator
specialization

multiserver, pipeline and divide&conquer
coordinators with and without buffers

DEVSwithSpec

gpt with processor
specialization

Generator sends jobs to processor (which
can be selected from a specialization) and
transducer

coordinated
architecture

coordinator specialization coupled to
multiple processor homogeneous coupled
model with multiple processor specialization

experimental
frame/architecture
family

experimental frame coupled to coordinated
architecture pecialization (version 2)

Processor Specialization

Class procQ is derived from class proc and they both have the same I/O ports.
Thus they are proper alternative choices in a processor specialization. We’ll
also add in class procName although its ports are different. We’ll discuss how
to deal with the issue of different port requirements in a specialization later.

public class procSpec extends SpecDigraphGraph {

public procSpec (String nm,int proc_time){
 super("procSpec"+nm;);
 add(new procQ(nm+"Q",proc_time));
 add(new proc(nm,proc_time));
 add(new procQ(nm+"Q",proc_time));
}
}

System Entity Structure

 143

GPT with Processor Specialization

To show how pruning works, we modify to the gpt class discussed in Chapter
6 so that the processor specialization replaces the processor.

public class gptWSpec extends digraphGraph{

public gptWSpec(){
 super("gpt");

 atomic g = new genr("g",10);
 digraph p = new procSpec("p",5);
 atomic t = new transd("t",70);

// the rest is the same as in the gpt definition.
}
}

Multiple Processor Specialization

We can use the multiEnt class to generate multiple homomogeneous models
and a specialization to choose the class to use to make the copies, as in the
first two choices in the following:

public class procsMultSpec extends SpecDigraphGraph {

public procsMultSpec (int size){
 super("procsMultSpec");
 add(new multiEnt("proc",size)); //multiple simple processors
 add(new multiEnt("procName",size)); //multiple simple
processors
 add(new multiEnt("procQ",size)); //multiple simple
processors, each with buffer
 add(new multiEnt("procSpec",size)); //multiple simple
processors, each selectable
}
}

Moreover, as in the third choice above, we can plug in a specialization class
for in the multient constructor enabling us to select each processor individually
to make up a heterogeneous coupled model. We can use the procsMultSpec
class within a coupled model with a class such as gptWMultSpec, which is
similar to gptWSpec except for the use of procsMultSpec.

We create a specialization for the coordinators discussed in Chapter 6:

public class CoordSpec extends SpecDigraphGraph {

public CoordSpec (String nm)){
 super("CoordSpec"+nm));
 add(new multiServerCoord("msCoord"));
 add(new pipeCoord("pipCoord"));
 add(new divideCoord("dcCoord"));
}
}

Chapter 8

 144

Coordinator Specialization

Then we can synthesize the coordinated architectures discussed in Chapter 6:

Architecture with Coordinator and Multiprocessor
Specializations

Note that constraints on the selection from the coordinator and
multiprocessor specializations must be applied. Choice of the divide and
conquer coordinator will only work with the choice of the processor with
standard ‘in” and “out” ports. Choice of the other coordinators will only work
with the processors able to accept name/port pairs for inputs and outputs.
Also, coupling is added to work with both situations (we consider this in a

moment).

Experimental Frame/Architecture with Specialization

We couple the experimental frame of Chapter 6 with the architecture with
specializations just discussed to create a coupled model class efa Figure 50.

public class archWSpec extends digraphGraph{

public archS(String name,int proc_time,int size)
{
 super(name);
 addInport("in");
 addOutport("out");

 CoordSpec co = new CoordSpec("CoordSpec");
 add(co);

 AddCoupling(this, "in", co, "in");
 AddCoupling(co,"out",this,"out");

specDigraphGraph multProcs = new procsMultSpec(2);
add(multProcs);

 AddCoupling(co, "y", multProcs,"inName"); //use name for routing
 AddCoupling(co, "yAll", multProcs,"in"); //broadcast for D&C
 AddCoupling(multProcs,"outName",co,"x");
 AddCoupling(multProcs,"out",co,"xAll");//for D&C

//more required for initialization, see Simparc Project
}
}

System Entity Structure

 145

out

in

archWspec

ef

in

out
start/stop

efa

Figure 50 efa as a coupled model with specializations

The coupling in efa is precisely the same as that in the efp class defined in
Chapters 6 (see efa in Simparc). In effect, we are allowing the alternatives
that can be pruned from the architecture SES to be coupled with the
experimental frame and tested for performance requirements. The SES for efa
is depicted in Figure 51:

genr transd

ef

divideCoord pipeCoord multiServerCoord

coordSpec ProcsMultSpec

archWSpec

efa

Figure 51 efa SES

Chapter 8

 146

yAll in

y inName
coordSpec procSpec

yAll in
divideCoord proc

y inName
pipeCoord

procName

a)

b)

c)

y inName

yAll in

Figure 52 Illustraints constraints on coupling and valid plugins

Constraints on SpecializationDEVS and DEVSwithSpec

A DEVSwithSpec is a template for constructing a family of models.
SpecializationDEVS are plugins to fill the slots in the template. In the previous
theorem, to assure well-defined results of such plugins (pruning) we assumed
that all plugins in a given slot had the same interface as the slot and that the
coupling constraints in the template were satisfied. However, requiring that
all plugins have the same input and output ports is too strong a condition. For
example, we found earlier that the constraints on selection of the coordinator
and processors cannot be done independently. Moreover, we saw that, as
illustrated in Figure 52, the couplings between coordinator and processors in
the divide and conquer architecture differ from those of the other prunings.
However, under certain circumstances, we can take the union of the couplings
required by the prunings as the coupling of the template (DEVSwithSpec).
This will work, provided that the extraneous couplings inherited to a pruning
are not activated. A simple, and easily verifiable, sufficient condition for non-
activation of extraneous couplings is that for each extraneous coupling, the
output port it specifies does not exist in the pruning’s source component. For
example, in Figure 52 b), the divideCoord does not contain the “y” output
port and so it cannot activate the extraneous coupling shown as the dashed
line.

System Entity Structure

 147

Summary

Exercise:

Recall the design the nCounter as a parameterized atomic model in Chapter
5. Design the multicounter as parameterized coupled model with nCounter
components. Write the formal algorithm that assigns nCounters and
multicounters to nodes in the SES. Design an iteration control that steps the
root nCounter through its cycle thereby stepping each of the counters in the
SES through their cycles.

