Neural Networks 1

Slide 0 Neural Networks

o
-

ar
Mot

o

atell QlojA Aele waix A ke AR olth

What are neural networks

A biological neuron (nerve cell) has 3 parts, a cell body, an input part dendrites,
and an output part axon.

e The end of axon has a set of branching fibers which are connected to dendrites
of other neurons.

Slide 1 e Signals are sent through this route among neurons.
e These connections are called synapses.
e Neural networks are models which try to modelize the biological nerve system.
e A neural network is constructed with highly interconnected multiple neurons.

e According to the results of biological research, a neuron performs a weighted
sum on the inputs and uses a nonlinear threshold value function to compute its
output.

Hansung Univ. S.H. Jung

Neural Networks

What are neural networks (#A|%)

synap se

-5
zE 52 3
E 8 SIfE T
e —] — B e
= e e
ﬂ V k s L)
o >
ot
i .T..[
b — =
Bt N, B
m i~

inpu

Slide 2

What are neural networks (7]%)

Slide 3

A tj.rp'i'i:'al netwurk of

neurons

S.H. Jung

Hansung Univ.

Neural Networks 3

What are neural networks (#A|%)

The biological neuron’s function is modelized as the following mathematical
model (artificial neural network)

Weighted sum: Weighted sum of inputs wixl + w2x2 + ... + wmxm

Slide 4
o If the weighted sum is greater than threshold T, then the neuron will produce an
output otherwise no output will be produced.
e u=wlxl +w2x2 + ... + wmxm - T
oy =f(u)
What are neural networks (#]%)
Slide 5

Hansung Univ. S.H. Jung

Neural Networks 4

What are neural networks (#A|%)

1
0
Slide 6
i %__f;_;-f_'-_-*i__
] @
slgmold functiol ntmuouns)

What are neural networks (7]%)

e Based on the network's mechanism, the neural networks may be divided into the
Slide 7 following groups:
— (1) Multi-layered Neural Networks (Back-propagation)

— In multi-layered neural networks, the signals flow in a single direction from input
layer to output layer via hidden layer(s).

Hansung Univ. S.H. Jung

Neural Networks

What are neural networks (#A|%)

input output

% OOy o

Ko~ 7 g N) 2
x‘i : h ."." ; : F3
Slide 8 : \ \ / ' a

) —F0
input hidden ountput
laver laver layer

Multi-layer Neural Network

What are neural networks (7]%)

— (2) Fully Interconnected Neural Networks (Hopfield)

— In fully interconnected neural networks, the signals travel bi-directionally among

neurons.

— Signals are exchanged randomly among neurons.

Slide 9

Fully Interconnected

One-layer Neural Network

Hansung Univ.

S.H. Jung

Neural Networks 6

What are neural networks (#A|%)

e Features of Neural Networks

— Neural networks have several wonderful features, such as:

Slide 10 x Massive Parallel Processing
1. Traditionally, computers operate sequentially.
2. On the other hand, humans process the information in a parallel form.
3. Neural networks, like human, can put the parallel information processing into
practice.
What are neural networks (7<)
Slide 11

Hansung Univ. S.H. Jung

Neural Networks

What are neural networks (#A|%)

Slide 12
judgment
Serial Information
Processing (Computer)
What are neural networks (7]%)
Slide 13

output

Parallel Information
Processing
(Neural Network)

Hansung Univ.

S.H. Jung

Neural Networks 8

What are neural networks (#A|%)

* Learning Ability
1. Neural networks, unlike computers, have an excellent flexibility based on
Slide 14 learning function.
2. They can learn from their surrounded environments and improve their
performances.
3. They can handle noisy and incomplete data.
4. Once the neural network is trained, it can cope with noisy inputs, unknown

or incomplete data.

What are neural networks (7]%)

Training data

A
Incomplete

4 Moisy

S

s 15 mput -

‘-\

outp ut-

Hansung Univ. S.H. Jung

Neural Networks 9

What are neural networks (#A|%)

* Fault Tolerance
1. In neural networks, unlike the computers memory, information are distributed
over entire neurons,
2. Therefore, a small damage in some neurons does not stop the entire system
behavior.
Output
layer
4
Y2
It1s

Slide 16 Input

(¥

What are neural networks (7]%)

e mathematical modeling technology inspired from human brain
e used for pattern recognition, prediction, and control
e history
in 1943, the first NN model was introduced by W. McCulloch and W. Pitts
Slide 17 — in 1949, the simple learning theory by Hebb
— in 1958, ANN "Perceptron” was introduced by F. Rosenblatt

— in 1969, the limitation of the Perceptron was proved by M. Minsky et al.
— 1969 ~ 1980, the dark age of neural research

— in 1980s, "Hopfield NN" by J. Hopfield and "error back-propagation” brought
boom

— in 1990s, NNs have continuously been developed and applied to various fields

Hansung Univ. S.H. Jung

Neural Networks 10

McCulloch-Pitts Model

e the first attempt to model Neural Networks in 1943

e five assumptions
1. the activity of a neuron is an all-or-none process

2. a certain fixed number of synapses (> 1) must be excited within a period of
Slide 18 latent addition for a neuron to be excited

3. the only significant delay within the nervous system is synaptic delay

4. the activity of any inhibitory synapse absolutely prevents excitation of the
neuron at that time

5. the structure of the interconnection network does not change with time

e assumption 1 identifies the neurons as being binary

—they are either on or off

McCulloch-Pitts Model (#|%)

— we can define a predicate
x N;(t) denotes the assertion that the ith neuron fires at time ¢
* —N;(t) denotes the assertion that the ith neuron did not fire at time ¢
—with these notations, the action of certain network can be describe by

Slide 19 propositional logic
Ny (t) = N1(t — 1) (precession)
N;3(t) = N1(t — 1) V Na(t — 1) (disjunction)
N3(t) = N1(t — 1)&Nz(t — 1) (conjunction)
N3 (t) = Nyi(t — 1)&—N»(t — 1) (conjoined negation)

—any network that does not have feedback connections can be described by
combination of these four expressions

Hansung Univ. S.H. Jung

Neural Networks 11

Hebbian Learning

e the main idea of Hebb's learning theory

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or

both cells such that A’s efficiency, as one of the cells firing B, is increased

Sound i;;;;\\\\1<:::>

Slide 20 Sea
~\\\\\\\\\\\\‘ Salivation
signal
()
/S.BC
Sight y@
— during learning take place, the area of the synaptic junction increased
From Neurons to ANS
e the individual computational elements of artificial neural system models are
often referred to as nodes, units, or processing elements (PEs).
e a general PE model
Output
Slide 21

Type n
inputs

Type 1

inputs
Type 2
inputs

Hansung Univ. S.H. Jung

Neural Networks 12

From Neurons to ANS (A%)

— Each connection is called a weight or connection strength
—strength of the synaptic connection between neurons

— various types

Stide 22 * excitatory connections have positive weights
1
* inhibitory connections have negative weights

— PE determines a net-input value: net; =}, z;w;;
— activation value: a;(t) = F;(a;(t — 1), net;(t))
—in the majority of cases, activation and net input are identical

— output function: z; = f;(a;) = fi(net;), sometimes f; is referred to
activation function

From Neurons to ANS (7<)

— dynamical system
* the network can be viewed as a dynamical system
x an example described by differential equations: i; = g;(z;, net;)
* an example
1. &; = —x; + fi(net;)
Slide 23 2. for long time, the output value will reach an equilibrium, i.e., ; =0
—x; = fi(net;)
* learning is accomplished by modification of the weight values
—w;i; = Gi(wij, xi, T4, - -)
—G; represents the learning law
— vector formulation
* net; = E?:l TjWij
% vector notation: net; = x - w; = xtw;

Hansung Univ. S.H. Jung

Neural Networks 13

The Perceptron

in 1958, Frank Rosenblatt invented the perceptron

he took exception to McCulloch-Pitts model where symbolic logic was employed

he developed a theory of statistical separability

photoperceptron (Fig. 1.12)
— connections have the values, +1 (excitatory), -1 (inhibitory), 0
Slide 24 — is a learning device
* in initial configuration, the perceptron cannot distinguish the pattern
* through a training process, it could learn
1. a pattern was applied to the retina (S)
2. the stimulus was propagated through the layers until a response unit was
activated
3. if the correct response unit was active, the output of the contributing A
units was increased

4. if the incorrect R unit was active, the output of the contributing A units
was decreased

The Perceptron (7<)

Slide 25

Sensory (S) area Association (A) area Response (R) area

——0 |Inhibitory connection

—® Excitatory connection

Either inhibitory or excitatory

Figure 1.12 A simple photoperceptron has a sensory area, an association
area, and a response area. The connections shown between
units in the various areas are illustrative, and are not meant
to be an exhaustive representation.

Hansung Univ. S.H. Jung

Neural Networks

The Perceptron (A|%)

14

-

N /’\)
O==
_ ;\

\
N A

Slide 26
Sensory (S) area Association (A) area Response (R) area
—© Inhibitery connection
—* Excitatory connection
Either inhibitory or excitatory
Figure 1.13 This Venn diagram shows the connectivity scheme for
a simple perceptron. Each R wunit receives excitatory
connections from a group of units in the association area that
is called the source set of the R unit. Notice that some A units
are in the source set for bath R units
Learning Rules
e a simple mathematical model
-y (t+1)=a(f;) & a(net;)
where f; is integration function and a(-) is activation function
— integration functions
* linear function
m
) fi=> wijz; —6;
Slide 27 o

where 6; is threshold
* quadratic function

m
fi=) wyai —6;
=1
* spherical function
m
fi=p7 Y (w —wi)® — 6;
=1

where p and w;; are the radius and the center of the sphere

Hansung Univ.

S.H. Jung

Neural Networks

Learning Rules (A<)

15

* polynomial function
m m
o
fi= E E Wik T Tk +.’L'jJ -1-:L'g’c —0;
j=1 k=1

where w;;y, is the weight on the conjunctive link connecting PE j and PE
k to PE ¢ and o and ay, are real constants

— activation functions

Slide 28)
* step function

1 iff>0
0 otherwise

* hard limiter (threshold function)

1 ff>0

o) =smh=9 _ 7

where sgn(-) is the signum function

Learning Rules (7<)

* ramp function
1 iff>1
a(f)=q f fo<f<1
0 iff<oO

Slide 29
* unipolar sigmoid function

* bipolar sigmoid function

Hansung Univ. S.H. Jung

Neural Networks 16

Learning Rules (A<)

a a f a
0 f 1 f = f
(a) (b) { c)
a
Slide 30 a
RS
AT
A A=10753215105
(d) (e)

Figure 9.2 Sample activation (transfer) functions. (a) Step function. (b) Hard limiter. (¢) Ramp func-
tion. (d) Unipolar sigmoid function. (e) Bipolar sigmoid function.

Learning Rules (#%)

— Linear Threshold Unit (LTU)

—PE with a linear integration function and a hard limiter activation function

— Linear Graded Unit (LGU)
—PE with a linear integration function and a graded activation function (sigmoid

Slide 31

function)

— LTU and LGU are the most frequently used models in ANNs

Hansung Univ. S.H. Jung

Neural Networks 17

Learning Rules (A<)

e connections

— five basic connection geometries

oop mo- n
Slide 32 © @
% N
1
i v : 'IKZ i€
O~ -, f
Input Hidden Output " " 2
layer layers m,f;r
(b) (e)
Figure 9.4 Five basic network connection geometries. (a) Single-la feedfi
| S gle-layer feedforward network.
(b) Multilayer feedforward net k. (c) Singl de with fe ac i § ingle-layer rec:
e mcu;ﬂv::);cn:‘)rkmg e node with feedback to itself. (d) Single-layer recurrent
- 2
Learning Rules (#%)
e Learning Rules
— two kinds of learning
* parameter learning : updating of the connecting weights
Slide 33

x structure learning : change in the network structure (# of PEs and connection
types)
— three categories of learning rules

* supervised learning
* reinforcement learning

* unsupervised learning

Hansung Univ. S.H. Jung

Neural Networks 18

Learning Rules (A<)

ANN
X Y X y
(Input) (Actual Output) (Input) Bl ad (Actual Output)
Error Error Critic
N . Critie
Signals Signal d Signals sf&“ﬁ] Reinforcement
Generator (Desired Output) Generator Signal
Slide 34 (a) (b)
ANN
X B ad y
(Input) (Actual Output)
(©)
Figure 9.6 Three categories of learning. (a) Supervised learning. (b) Reinforcement learning. (c) Un-
supervised learning
- PN
Learning Rules (#%)
() .
. ith
,\,)
2 neuron
s
Tl
< x
X J
Learning d
i Signal p— ;
. X 1
Slide 35 q m=1 r Generator
x = -1
m

Figure 9.7 The general weight learning rule (d, is not provided for the unsupervised
learning mode).

— a general form of weight learning rule

x Aw;(t) o< rx(t) or Aw;(t) = nrx(t)
where 7) is a positive number called learning constant which determines the

rate of learning r is the learning signal r = f,.(w;,x,d;)

Hansung Univ. S.H. Jung

Neural Networks

Learning Rules (7<)

19

* the weight vector at learning time step (¢ + 1):
wi(t +1) = wi(t) +nfr(wi(t), x(t), di(t))x(?)
1 is discrete-time weight modifications

Slide 36

Slide 37

. . . e dwi(t
* continuous-time weight modifications: “:i;t() = nrx(t)
based on this general weight learning rules, several supervised and unsupervised
weight learning rules have been developed
— Hebbian learning rule
* is an unsupervised learning rule because of no desired outputs
* rAa(wlix) =y;
* Aw; = na(wlx)x = nyix
* if the components of the weight vector are updated:
— T — . _ i =
Aw;j = na(w; x)z; = nyzj,i=1,2,...,n;j=1,2,...,m
- 2
Learning Rules (7<)
Example 9.2
Considcr the Hebbian learning rule for an ANN with a single PE which is a LTU. There are four
1nputs, x,, x,, x3, and x,, to this PE. The corresponding weight vector is w = (W), wy, wa, w4)7.
Assume that this ANN is to be trained using the following three input vectors:
1 -0.5 -1
XV = 1.5) D= ! Mo . 0
0.5 o[-1
0 L5 -0.5
The initial weight vector is selected as
1
w(H 0
-1
0
and the learning constant is set to 1 = 1. Then according to the Hebbian learning rule, the fol-

lowing steps are taken:

Step 1: Consider the first input pattern x* to update the weight vector:

1

. . 0
w® = wh 4 sgn((w®)7xV)x® = + sgn (0.5)

0

Hansung Univ.

0.5

1
1.5

0

2
1.5
05|

0

S.H. Jung

Neural Networks 20
H 2
Learning Rules (A]%)
Step 2: Consider the second input pattern x@:
2 -0.5 1.5
wd = w?® 4+ sgn((wm)rx‘:’)x‘l): 1.5 +sgn (0.5) l = 2.5 .
-0.5 0 -0.5
0 1.5 1.5
. Step 3: Consider the third input pattern x**:
Slide 38
1.5 =]} 25
25 0 25
@ — Ww® BN (3 B —) =
w=w" +sgn((w) x)x" = +sgn (-1.75) = A
sen((w?)) -0.5 § -1 0.5
1.5 -0.5 2
It can be verified that sgn((w®)"x") = sgn((w®)"x®) = 1 and sgn((w®)"x"V) = -1. This
means that the inputs (x"” and x'?) that caused the PE to fire previously will cause it to fire
again in the future with the final learned weights. This is also true for the input x® which
inhibits the firing of the PE. Thus, the final weights have captured the coincidence relationship
of input-output training pairs.
H 2
Learning Rules (#%)
— single-layer perceptron
* learning process
m
(k) _ T (k) _ (k)) _ (&) - _ b=
y; = a(w; xFy =q E Wi T; =d;’,i=1,2,---,n;k=1,2,---,p
Jj=1
k) . k) .
where yg) is actual output pattern and dg) is target pattern
Slide 39 x learning rule (simple perceptrons with LTUs)
— To(k)y — g8 , k=
yl(k) - sgn(wi X()) - dz 0= 1,2,"',”,]{5 - 1727"'7p
w!x(k) = 0 is the hyperplane (called decision plane)
* ex. 10.1)

1. classify the six patterns in a two-dimensional space
{[-1,0]7,[-1.5,—1]7,[-1,-2]T}: class 1
{[2,0]7,[2.5, —1]T, [1,—2]T}: class 2

2. g(x) = -2z + 22 + 2 =0 (fig 10.2 (a))

3. yh) = sgn(wlxgk) + wgasgk) -0)

—w; = —2,wy = 1,0 = -2 (fig 10.2 (c))

Hansung Univ.

S.H. Jung

Neural Networks 21

Learning Rules (A]%)

4. y®) = sgn(wTxk)) = q*)

where
-1 -1.5 -1
1 — 2 _ _ (3) _
Slide 40 o 0 ' T 1 , T -2 |,
-1 1 1
2 2.5 1
24 = 0 ,.’1:(5) = -1 ,:II(G) _ 9 |,
-1 -1 1
dV =d® =d® = +1,d® =d® =d® = -1, w = [wy, wa, w3]T
Learning Rules (A1)
Slide 41 y

Hansung Univ.

(-1.5-1) X

-1,-2X
Boundary
(a) (b) ©

Figure 10.2 Classification problem using single-LTU perception in Example 10.1.

S.H. Jung

Neural Networks

Learning Rules (A]%)

22

* learning rule
1. r&d; — y;, where y; = sgn(wlx) and d; takes the values of +1

Slide 42
2ndix; if y; £ d;
g T na; Y
Aw;j = nld; — sgn(w; x)]z; = J i # di
0 otherwise
3. ex. 10.2 (n = 0.5)
1 2
Learning Rules (A1)
Example 10.2
Let us consider another simple classification problem where the input space is a one-dimen-
sional space, that is, a real line:
Class 1: V' =0.5, =3 dV=d®=+1.
Class 2: x? =-1, M =-2; dP=d¥=-1.
The simple perceptron with a single LTU for solving this problem is shown in Figure 10.5(a).
The unknown weights w, and w, in this figure are trained using the following augmented input
Slide 43 vectors:
I =
) «) 0.5 ‘ L= 1 ‘ x'”:(z), x"":(z),
-1 =1 -1 -1 -1
which will be “recycled” for training if necessary. For convenience, let us arbitrarily choose

m = 0.5 and an initial weight w" = [-2, 1.5]". Then the training proceeds as follows.

Step 1: When x'"is the input, the corresponding actual output and weights are, respectively,
P P! P! g P g

0.5
= sgn(l‘l 1,5](l)) =-1#dV,

W@ = W 4 D= (71'5)'
0.5

(1
y

Hansung Univ.

S.H. Jung

Neural Networks

Learning Rules (A]%)

23

Step 2: When x'? is the input, the corresponding actual output and weights are, respectively,

y =1)
Y& = sgn(rl.s, ()_5](1)) =1#4d%,
W = w® — x® = (_0‘5).

1.5

Step 3: Similarly, when x*

is the input, the corresponding actual output and weights are,

. respectively,
Slide 44 SRS
2
y = sgn([0.5, |5|()) =-1#d",
=]
wh = w® 4 xP = 1'5)_
0.5
Step 4: Finally, when x* is the input, the corresponding actual output and weights are,
respectively,
-2 =
() - — (4)
y . =sgn |1.5,().5|()>ffl /Al 8
o(15.01(7)) - 1@
wt‘) wl»h(
Learning Rules (A1)
x limitations : linearly separable (no decision-plane for XOR problem)
x2
(0,1) ©(1,1)
Slide 45

.

.

Hansung Univ.

S.H. Jung

Neural Networks 24

Adaline

e in 1962, Widrow introduces Adaline (Adaptive Linear Element)

e PE with a linear activation function
— a supervised learning problem
— training patterns, {(x(),d™), (x?),d®), ... (x(P) dP)}

the goal is to find a correct set of weight w;

Slide 46 > wial? = a®), k=1,2,---,p
j=1

the solutions for w exist if the patterns are linearly independent

cost function E(w): measures of system performance error

Blw) = 53 (¥ -y®y

DN | =
[~

~
Il
—

(d®) — wTx(*))?

I
N | =
[~

x~
Il
-

Adaline (A1%)

M@

1 m
3 (d(k) — ijmgk))Q
j=1

~
Il

1

* find the weights to minimize E(w)

— gradient-descent algorithm
Slide 47 * Aw =nVwE(w)

OFE - .
ij = n% = T’Z(d(k) - wa(k))mg'k)L? = 172)" L
J k=1

= if the change are made for individual patterns
Aw; = n(d*) — wa(k));cgk)
—called Adaline learning rule, Widrow-Hoff learning rule,

least mean square (LMS) rule

* a linear network : an array of Adalines

Hansung Univ. S.H. Jung

Neural Networks

Linear Graded unit

25

e activation function is nonlinear and differentiable

e cost function

n
S (@) - 50y

12
BE(w) = 5 >
k=1 i=1
: LS8 g0 T ()2
Slide 48 = 522 (@ —aw]x")
k=1 i=1
S S o
= 3220 Z wijz
k=1 i=1
— applying the gradient-descent algorithm
OE S BN () (K
S —Z[dz(.) a(netz())]a (netg))xg-)
“ k=1
, (k)
where net'®) & wIx® and a (net'®) = %
Linear Graded unit (#]%)
— if the change are made for individual patterns and the learning constant is 7
k E)yy.
Awyy = -0 = nd? - a(net{")]a’ (net{")z{"
— called delta learning rule
- rA [d; — a(wTx)]a (wl'x)
— in a nonlinear activation function, the learning process become stuck at a
Slide 49 local minimum

— advantages of nonlinear activation functions

* keep the outputs between bounds (+1) —arbitrary number of layers
feasible

* make possible the solutions of problems that are not possible with linear
units

* map nonlinear patterns

* multilayer nonlinear feedforward network does not have linearly
independent restriction

Hansung Univ.

S.H. Jung

Neural Networks

Multilayer feedforward networks

26

e LTU and LGU has limitations
Slide 50 — LTU limitation: linearly separable
— LGU limitation: linearly independent

e multilayer networks overcome these limitations

— ex. 10.4

Multilayer feedforward networks (7<)

Example 10.4
This example illustrates how a linearly nonseparable problem is transformed to a linearly sep-
arable problem by a space transformation and thus can be solved by a multilayer perceptron
network with LTUs. The problem we consider is the XOR problem. As shown in Fig. 10.6(a),
the input patterns and the corresponding desired outputs are

A)
Q) ()

. Obviously, the four input patterns are not linearly separable in the input space (or the pattern
Shde 51 space). We arbitrarily use two lines to partition the input space into three subspaces [see Fig.

o class | iy

X class 2

(b) (©)

Figure 10.6 Multilayer perceptron for the XOR problem in Example 10.4. (a) Input (pattern) space
(linearly nonseparable). (b) Image space (linearly separable). (c) A multilayer perceptron network for
the XOR problem.

Hansung Univ.

S.H. Jung

Neural Networks

Multilayer feedforward networks (7] %)

27

10.6(a)] in such a way that each subspace contains patterns belonging to the same class. The
two selected lines are
X —x,+05=0 and x,—x,—05=0.

Two LTUs are used to perform the partitioning created by these two selected lines. Hence, their
respective outputs are

z; =sgn(x; —x,+0.5) and Z=sgn(x;, —x,—0.5).

These two LTUs are put in the hidden layer of the final network in Fig. 10.6(c). Looking at the
2172, space, also called the image space, the original training patterns become

Slide 52 1 o
-)e) -()en)

-1 -1
(Zmz(l),dm=—1); (1(4):<1),d‘4)= I)A

1 ~1

The transformed training patterns in the image space are shown in Fig. 10.6(b). It is observed
that the original input patterns x""” and x*’ coincide in the image space and that the transformed
training patterns also become linearly separable in the image space. The remaining classifica-
tion problem becomes what we have dealt with previously. A boundary can be chosen arbi-
trarily, say z; — z, — 0.5 = 0 [see Fig. 10.6(b)], to separate these patterns. The function of the
selected line is performed by the third LTU in the output layer, whose output is

y=sgn{z; —iz; —0.5).

The final network for solving the XOR problem is shown in Fig. 10.6(c).

Back Propagation Learning Algorithm

e one of the most important development in neural networks [Werbos, 1974;
LeCun, 1985; Parker, 1985; Rumelhart et al 1986]

e back-propagation networks. multilayer feedforward network with the BP learning

algorithm

Slide 53 e learning rule
— gradient-descent method
— two phases (given input-output pair (x(*), d(*)))
1. input pattern x(¥) is propagated to produce actual output y(¥)
2. error signals d*) — y(¥) are back-propagated from output layer to the
previous layers to update weights

— three-layer back-propagation network

Hansung Univ.

S.H. Jung

Neural Networks

Back Propagation Learning Algorithm (A]<%)

28

Slide 54 W

Back Propagation Learning Algorithm (A]<%)

* nety = Z;nzl UgjTj

* 2z = a(nety) = a(3J71, vgjw;)

* net; = Zf;=1 WigZq = 251:1 wig (254 Ve 5)

* y; = a(net;) = a(zzzl Wigzq) = a(Zézl Wiga(3]1 VgiT;))
* cost function

E(w) =3 3 (di —9:)* = 3 Xy [di — a(net;)]* =

. 1
Slide 55 s> [di— a(Y gy Wig2q))
x gradient-descent method (in hidden-to-output connections)
Awig = —1 a?uEiq

Awig = —n[§E][52-)[Frekt] = n[d; — yi)[a (nets)][2) & 1602
where §,; A —% =[d; — yi][a' (net;)] is the error signal at output
node ¢

OE . Onet

I OE . 0z
Onet,

91 — — -
Ovg;j I= n[(')zq [6netq

Onet,
8?},“'

Il

OE
Avgj = —nlg =] =l
q7

Hansung Univ. S.H. Jung

Neural Networks 29

Back Propagation Learning Algorithm (A]<%)

= Z[(dz’ — yi)a (neti)wig][a (net,)][z;]
n Z[(Soiwiq]al (netg)z; = ndpex;
i=1

0z4
Onety

where 0pq = —[g—i]] = d (nety,) o, 8ow;q are error signal at
Slide 56 hidden node ¢

@ called generalized delta learning rule

@& error signals d,; are propagating backward
@ can be extended to the network with more than one hidden layer by
chain rule
= Awi; =10iT5 = Nooutput—i * Tinput—j
@ bipolar sigmoid function is used as the activation function
—00i = 5(1 — y})[di — i
—0hg = 5(1— 23) iy GoiWiq

Back Propagation Learning Algorithm (7<)

e Learning Algorithm
- Let

@ feedforward layers, ¢ =1,2,---,Q
Inet; and 9y; denotes the input and output of the ith unit in the ¢ layer
m input nodes and n output nodes

* % X ¥

%w;; denote the weight from ¢~ 'y, to %y,
training pairs {(x*),d®) |k =1,2,---,p}, -’vgfll =-1

step 0 initialization

Slide 57

*

x choose 17 > 0 and E;,4,; (maximum tolerable error)
* initialize the weights to small random values
x set F=0and k=1

step 1 training loop

* apply kth input pattern to the input layer (¢ = 1): y; = y; = mgk) for all

Hansung Univ. S.H. Jung

Neural Networks 30

Back Propagation Learning Algorithm (A]<%)

step 2 forward propagation
* propagate the signal forward through the network using
Ty; = a(tnet;) = a(}X; Twi; 7 ly;)
step 3 output error measure

* compute the error value for the output layer
b= %E?ﬂ(dgk) —Qu)?+EQ; = (dﬁ’“) —Q y)a (Unet;)

Slide 58 .
step 4 error back-propagation
- * propagate the errors backward to update the weights
A twg; =1 26 Ty; and WY = wdt + A Tw;;
915, = a (9" 'net;) >, Twji 105 forg=Q,Q—1,---,2.
step 5 one epoch looping
- * check all training data has been cycled, if not, go to step 1; otherwise, go to step 6
step 6 total error checking
- * if £ < Epqz, then terminate; otherwise £ = 0,k = 1, and go to step 1
Back Propagation Learning Algorithm (A]<%)
e learning step and epoch
— a learning step indicates learning of a single training pattern
— one epoch indicates learning of all training patterns
e universal approximators
— three layer network with squashing activation function and linear or polynomial
Slide 59

integration functions can approximate any function with desired degree of
accuracy if sufficiently many hidden units are available

squashing function
*x a:R—[0,1] (or [-1,1])
* it is nondecreasing and lim)_,oca(A) =1, and limy_,_sa(A) =0 (or —1)

four layers NN with small hidden units is better than three layers NN with many
hidden units

BP learning algorithms can make a neural network stuck at the local minima

Hansung Univ. S.H. Jung

Neural Networks 31

Back Propagation Learning Algorithm (A]<%)

e Learning factors of BP

— initial weights
* initialize at small random values
* equal initial weights cannot train the network properly
* one way to choose the weight w;; in the range of [-3/v/k;,3/Vki

Slide 60 where k; is the number of input links of PE ¢

— learning constant
* a large n could speed up the convergence but might result in overshooting
* a small n has a complementary effect
* values of 7 ranging from 102 to 10

— cost function

* other cost function can be used
* ex) B = >3,(di —y;)?, where 1 <p < o0

Back Propagation Learning Algorithm (A]<%)

— momentum
* if learning constant 7 is small, then learning speed can be very slow
x if learning constant 7 is large, then learning can oscillate
* large learning constant without divergent oscillations
- addition of a momentum term to the normal gradient-descent method
- Aw(t) = —VE() + aAw(t — 1)
where « € [0, 1] is a momentum parameter

Slide 61 _ update rules

* can use other methods not gradient-descent (or steepest-descent)
— training data and generations
* training data should cover the entire expected input space
* during the training process, select data randomly
* overfitting
- if the change of input is small, then cost function should not change
— number of hidden nodes
* difficult to solve because the complexity and nonlinearity properties of NN

Hansung Univ. S.H. Jung

Neural Networks 32

Single-layer feedback networks and associative memories

o Hopfield networks [1982, 1984]
— single-layer feedback network (or recurrent network) with symmetric weights
— two application areas
* associative memory
* optimization problems

Slide 62

Vo Y, ¥i

Single-layer feedback networks and associative memories (7| %)

e discrete Hopfield networks

— operations
Slide 63 an input pattern is first applied
the network’s output is initialized

input pattern is removed

EE

the initialized output becomes new, updated inputs through the feedback
connections
* continues this process until the network reached its equilibrium

Hansung Univ. S.H. Jung

Neural Networks 33

Single-layer feedback networks and associative memories (4] <%)

— properties
* no self-feedback —w;y; =0 and w;; for i =1,2,---,n,i # j
* weights are symmetric —w;; = wy;
x the evolving rule (or update rule)

Slide 64
yi(k-f-]_):ggn Z wi]-y](.k)+m,~—01- ,i0=1,2,---'n
J=1(5#4)
— two update rules
* asynchronous fashion: for a given time only a single node is updated and the

output is used for updating next randomly chosen node
* synchronous fashion: for a given time all node are updated

Single-layer feedback networks and associative memories (7| <)

- ex. 11.1)

* Wy = woy = —1, w11 = wee = 0,27 = 22 =0, and 01 62 =0, set the
y(O) = [_17 _1]T

% asynchronous update
yi? = sgn(wioys”) = sgnl(-1)(-1)] =1

2 1

ys? = sgn(waryi”) = sgn[(-1)(1)] = -1

* no further update —stable state

Slide 65

* synchronous update

gy [somlwast”]) _ [sgnl-n0)) (1
sgnfwayi”] sgn[(—1)(~1)] 1
gor _ [somley’) | _(sonl-n@1) _ [-1
sgnfwa "] sgn[(=1)(1)] -1

* a cycle of two states —no equilibrium state

Hansung Univ. S.H. Jung

Neural Networks 34

Single-layer feedback networks and associative memories (4] <%)

— stability property
* energy function £

1 n n n n
E=-5 Z > wiyiys — Z%yz + Z biyi
i=1 j=1(j#1) =1 i=1

* the E will decrease if the network is stable

. x proof
Slide 66
- AE =By - B) =
n k k k
- (Ej:l(j;éi) wzjy]() +x; — Hi) (Z/z(o ?ng)) = —(net;)Ay;
. ylgk) = +1,y§k+1) = —1 case
—Ay; = —2 and net; < 0 because y§k+1) = —1,then AE <0
. yz(k) = —l,ygk“) = +1 case
—Ay; = +2 and net; > 0 because y§k+1) =41, then AE <0
o 2 e
—Ay; =0, then AE =0
- thus, AE<0
Single-layer feedback networks and associative memories (#|%)
— Lyapunov stability theorem
* used to prove the stability of a dynamic system
* Consider the autonomous (i.e., unforced) system described with a system of n
first-order linear or nonlinear differential equations:
Slide 67 Yy = fi(y)
Y2 = f2(y)

or in vector-matrix notation: y(¢) = f(y)
where y(t) = (y1,%2,--,yn)T is the state vector and f(y) = (f1, fo, -, fn)T is
a nonlinear vector function.

Hansung Univ. S.H. Jung

Neural Networks 35

Single-layer feedback networks and associative memories (4] <%)

Asymptotically stable (means the state vectors converges to zero as time goes to
infinity) can be accomplished if a positive-definite(energy) function E(y) can be
found such that

Slide 68)) .]
1. E(y) is continuous with respect to all the components y; for i =1,2,--- n, and
2. dE[y(t)]/dt < 0, which indicates that the energy function is decreasing in time
x the energy function E(y) is called Lyapunov function
- is not unique for a given system
- if at least one function exists, the system is asymptotically stable
Single-layer feedback networks and associative memories (7| %)
e associative memories
— can store a set of patterns as memories
Slide 69 — when a key pattern (test pattern) is presented, then it responds by producing

most resemble or relate stored pattern

— called
* content-addressable memories in contrast to address-addressable memories in
digital computers

Hansung Univ. S.H. Jung

Neural Networks 36

Single-layer feedback networks and associative memories (4] <%)

— two types of associative memories
* p pairs of vectors {(x!,¥y!), (x?,¥2),...,(xP,yP)} with x* € R" and y* € R™
* autoassociative memory
Cxt =y
- network mapping ®(x!) = x!
- thus, ®(x) = x* if x is the most closer to x*
* heteroassociative memory:
- network mapping ®(x?) = y!

Slide 70

- thus, ®(x) =y’ if x is the most closer to x!
— distance
% two vectors X = (21, Za,...,%,)T and X = (z,2y,...,2,)7T
% Euclidean distance: d = [(z1 — 7)% + -- - + (zn, — x,)?]"/?
St mi—x | ifa,x; €0,1

* Hamming distance: HD(x,x) = Cen . ,
32 | @i— x| ifmim e —1,1

Single-layer feedback networks and associative memories (7| <)

— recurrent autoassociative memory—Hopfield memory

* data retrieval rule:

n
yz(k+1):89n Z wljy‘gk)+xz_01 57;:1727"'7’”
J=1(j#4)

Slide 71 * finding weight matrix
- where bipolar binary vectors x*¥ k= 1,2,...,p

or
p
— k .k - ; —
Wi = sz’xjaz # J,wi =0
k=1

- where unipolar binary vectors, i.e., ¥ € 0,1

Hansung Univ. S.H. Jung

Neural Networks 37

Single-layer feedback networks and associative memories (4] <%)

P
wij = Y (2aF —1)(2af —1),i # j,wi; =0
k=1

- —basically Hebbian learning rule with zero initial weights
- —called Hebbian-type learning rule or outer-product learning rule

. * ex. 11.4)
Slide 72
b le 11.4 ' 1 1
xam‘EZurada. 1992]. Consider the use of a Hopfield memory to store the two vectors X and X*
3 -1,117 2=[1,1,-1,1)".
x =[1,-1,-1,1] and X 1y
From Eq. (11.22), we obtain the weight matrix as
0o -2 0 0
2 - -2 0 0 0
L CT _ Ay —
w=> ¥ -1 X ,

k=1

Single-layer feedback networks and associative memories (7| %)

and from Eq. (11.2), the energy function is

E(x)= —%XTWx =2(xx, + x3%,).

The state transition diagram is shown in Fig. 11.7. There are a total of 16 states, each of which
corresponds to one vertex. This figure shows all possible asynchronous transitions and their
directions. Note that every vertex is connected only to the neighboring vertex differing by a sin-
. gle bit because of asynchronous transitions. In Fig. 11.7, each state is associated with its energy
Slide 73 value. It is observed that transitions are toward lower energy values. We further find that there
are two extra stable states X' = [-1, 1, 1,-11" and X* = [1,-1,1,-1]" in addition to the two

states x' and x” that we want to store.
Let us consider some transition examples. Starting at the state [1, 1, 1, 1]7 and with
nodes updating asynchronously in ascending order, we have state transitions [,1,1,17—
FLL L1 =1, 1,1, 1]T~ [-1,1,-1,1]7- - -. Hence, the state will converge at the stored
pattern x*. However, it is possible (with a different updating order) that the state [1, 1, I, 1"
will converge to x' =[1,-1,-1, 1), %' = [-1, 1, 1,-1)7 or ¥* = [1,-1, 1,-1]". This happens
because the Hamming distance between the initial state, [1,1,1,1)" and any of x', x>, X', or X?

is of the same value 2.

Hansung Univ. S.H. Jung

Neural Networks 38
Single-layer feedback networks and associative memories (4] <%)
IRRRIH
(4) (0)
F=l-1,1,1-1]
X' =[1-1-1,1]
Slide 74
(0)
X=(-1,1-1,1] |

1|

-4) SLEAT
(Energy values in

F1e1-1-17(4) parentheses)
(0) (4)
Figure 11.7 State transition diagram for Example 11.4.
Single-layer feedback networks and associative memories (7| %)
— bidirectional associative memory (BAM)
g Y In
Y Layer
Slide 75
v
X Layer
Hansung Univ. S.H. Jung

Neural Networks 39
Single-layer feedback networks and associative memories (4] <%)
xy =a(Wx)ory, =a (ZTZI wl'j.’).':j) i=1,2,...,n
x x =a(WTy') or x; =a (Z?:1 wjiy;) ,i=1,2,...,m
y =a(Wx®) (first forward pass)
x(?) = q(WTy™M) (first backward pass)
Slide 76 y® = a(Wx®) (second forward pass)
x4 = oq(WTy®) (second backward pass)
y*1) = g(Wx(k—2)) [(k/2)th forward pass]
x(F) = (WTy(*=1y [(k/2)th backward pass]
x consider {(x!,y'), (x%,¥%),...,(xP,y?)}
Where Xk:($f7m§7"'7xfn)T and yk:(yf7y§7"'7yfb)T
* weight learning rule for BAM
Single-layer feedback networks and associative memories (7| %)
W — YR EMT for bipolar vectors
b (2y* —1)(2xF —1)T for unipolar vectors
or
v — { o yrak for bipolar vectors
L k k i
Slide 77 he1(2yf —1)(2z% — 1) for unipolar vectors
* assume one of the stored vectors x* is presented to the BAM
p 7
y =a (Z(yk(xk)T)Xk >
k=1
! p !
—a nyk + Z yk(xk)Txk
k=1(k#k")
= a(ny* +n)
Hansung Univ. S.H. Jung

Neural Networks 40

Single-layer feedback networks and associative memories (4] <%)

k

* if the vectors x* are orthogonal (i.e., HD(x*,x!) = n/2 for

k,l=1,2,...,p,k #1), then the noise term 7 is zero
—y =yF* , stabilize only a single pass

k

* assume one of a distorted pattern x* is given

—sthe stabilization depends on factors such as HD between x* and stored x*
vectors, the orthogonality of y*, and the HD between y*
* stability of BAM
- based on Lyapunov (energy) function
- bidirectionally stable if y(*) — y(k+1) 5 y(k+2) gnd y(k+2) = y (k)

energy function: E(x,y) = —ix" W'y — 1yTWx = —y"Wx

Slide 78

AE,, = VyEAy;
m
= —WXAyi = — ZU)ZJ.Z'J Ay“ZZ 1,2,...,”
j=1
AE,, = VxEAz;

Single-layer feedback networks and associative memories (7| <)

n
= —WTyij:— ijiyi ij,jzl,Z,...,m
=1
2 for 301, wijz; >0
Slide 79 Ayi=1q 0 for 37, wiz; =0
[—2 for 370, wijz; <0

2 for 37, wjiy; >0
Azj =4 0 for 37 wjiy; =0
L —2 for E?:l wjiy; <0

—finally AE <0
* ex. 11.5)

Hansung Univ. S.H. Jung

Neural Networks

41

Single-layer feedback networks and associative memories (4] <%)

Example 11.5
Given the following two pairs of vectors to be stored in a BAM:
x'=[1,-1,-1, 1, 1,-1, 1,-1,-1, 1", Yy =rFL-L L1107,
=(1,1,1,-1,1,1,1,-1,1,-1]", V=[F1L-11,1,-1,-1)7.

From Eq. (11.33) we have

2 0 0o 0 -2 0 -2 2 0 0

2 0 o 0 -2 0 -2 2 (U]

2 0 o o0 2 0 2 2 0 o0
w= 8

2 0 0o 0 2 0 2 2 0 o

0o -2 -2 2 0 -2 o0 0o -2 2

0o -2 -2 2 0 -2 0 0o -2 2

Slide 80

For testing, we first choose a vector x with a HD of 2 from x' : x¥ =[-1, 1, -1, 1, 1, -1, 1, -1,
-1,1)". From Eq. (11.31), we obtain
¥y =a([4,-4,4,4,8,8)=[1,-1,1,1,1,1],
x‘:‘=a([8,*4.-4,4,8,*4,8,-8,74,4]T)=[L*l‘-l‘l,lrl. 1,-1,-1,11,
=[FL-1L1,1,1,1] =y

Hence it is bxdlrecuonally stable and recalls the first-stored pair successfully. Lct us perform
anolher !nal by choosing x” =[-1,1,1,-1,1,-1,-1, 1,1, 1]7. Since HDx”, x') =7 and
HDx"”, x*) =5, itis expected that the second-stored pair will be recalled. Using Eq. (11.31),
we hﬂ\L

vV =a([4,4,-4,-4,-4,-41") =1, 1,-1,-1,-1,-1]",

Y=a([-8,4,4,-4,-8,4,-8,8,4,-41) = [-1,1,1,-1,-1, 1,-1, 1, 1,17,

yO=11,1,-1,-1,-1,-1]" = y®.
Further propagation does not change the states. The achieved stable does not matc Ay

of the stored pairs. However, it is actually the complement of the first-stored pair: (x°, y)
= ¥ ¥ L ina BAM-thea it

(X his illustrates the fact that if 3 pair(omplemer
(X, ma 50 stored.

Single-layer feedback networks and associative memories

(A%)

@& capacity : p = \/min(m,n)
@ can be extended multidirectional associative memory

— Boltzmann machines

* a discrete Hopfield network in which each node performs a simulated annealing

process

Slide 81 * a state changes from s°/¢ to s™** with probability p
i

1
P=17 exp(—AE/T)

where AE = Eold _ pnew
* stochastic update rule

1 ifz§p,~=

y2!d otherwise

1
new 1+ezp(—AE;/T)

Yyi =

Hansung Univ.

S.H. Jung

Neural Networks

Unsupervised learning networks

42

e unsupervised learning

no feedback from the environment what the desired outputs of a network

— discover for itself any relationships such as patterns, features, correlations, or

categories

how similar a new input pattern is to typical patterns seen in the past
—self-organizing networks

Slide 82 — useful in determining the fuzzy logic rules and fuzzy partitioning
e unsupervised learning rules in a single-layer network
- inPUt X= (1.171'27 s 7xM)T and output y = (y17y27 s 7yn)T

weight from j to node i is denoted by w;;

s(+) is a monotonic nondecreasing signal function

Hebbian learning rule
* wij = —wij + si(yi)s;(2;)
Sanger's learning rule

* Wi; = NY; (wj - Z};:l ykwkj)

Unsupervised learning networks (A]<)

— Grossberg'’s learning rule
* w; = nlyz; — wilu(x;)

— competitive learning rule

Slide 83

* i = si(yi)[sj () — wis)

where competitive signal s;(y;) = 57, ¢ > 0

Hansung Univ.

S.H. Jung

Neural Networks 43

Unsupervised learning networks (4]<%)

Slide 84

with large c it acts as a binary win-lose indicator

—"wins" if s;(y;(t)) = 1, "loses” if s;(yi(t)) =0

learn if win

if we use s;j(x;) = x;, then becomes linear competitive learning rule
wij = si(yi)[z; — wi]

competitive learning systems adaptively quantize the pattern space
—called adaptive vector quantization (AVQ)

simple but important competitive learning rules
- called Kohonen learning rule or winner-take-all learning rule

- the number of classes n is known a priori

T

; X) where a(-) is a continuous activation function

)T

- outputs: y; = a(w

- weights: wW; = (wﬂ, Wi,y - vy Wi

- inputs: {x!,x?,...,xP} which represents n clusters

- learning rule
5) ||=
2

o . . . (k
Similarity matching : || x — W mini<j<n{|| x — wg.) [}

Updating:

Unsupervised learning networks (A]<)

Slide 85

Hansung Univ.

WO 2 B 4 o) —)
(k1) _ o (k)

W =W

where W; = va:—H

forj=1,2,...,n;5 #1
- find the "winner” v‘vgk) which is the pattern closest to the current input
pattern
argmin; || x =W, [|> = argmin;(x — W;)7 (x — %;)

_ . T AT T A
= argmin;(x"x + W' W, — 2x" W;)

= argmax;(x’W;) = argmax; (W]Tx)

—if the input pattern x correlates maximally with w, then
net; = wlx =|| W; ||| x || cos(W;,x)
—ith node wins if the input pattern x is more parallel to its weight
vector W than to any other W, j # ¢
- two factors that affect learning
1. initial weights: uniformly distributed random on unity hypersphere

S.H. Jung

Neural Networks

Unsupervised learning networks (4]<%)

44

2. o(®) parameters: begins with a large value and decreases gradually
@ the sequence {a®;k =0,1,...,;0 < a® < 1} should satisfy the
following conditions

Slide 86 D a® =00,> (a®)? < 00
k=0 k=0

@ example sequences
(a) {a(k)} =11, %7 %7 ..o}
(b) a®) = ok~ P(with 8 < 1)
(c) a®) = ag(1 - pk)
practically a*) = 0.1(1 — k/10,000) for 10,000 samples x (k)

Unsupervised learning networks (A]<)

e Self-organizing feature maps

converts patterns of arbitrary dimensions (pattern space) into one-or
two-dimensional arrays of neurons (feature space)

achieving dimensionality reduction

topology-preserving map that preserves neighborhood relations of the input

pattern
Slide 87 — Kohonen's self-organizing feature map
Y
U\

(a)

Figure 12.6 Two basic types of feature mapping networks.

Hansung Univ. S.H. Jung

Neural Networks 45

Unsupervised learning networks (4]<%)

— learning rule

similarity matching:

[= Wi [[= min;{|| x — W; ||}
updating:
Slide 88
k k k . k
(k+1) ng) + ol [xg) ng)] fori € N
Wi = (k) .
w;; otherwise
where Ni(*k) = N;- (k) is the neighborhood set of the winner node i* at time
step k
x learning constant a and neighborhood set N;- (k) is changed dynamically
* start with a wide range for N;- (k) and a large o and then reduce both gradually
Unsupervised learning networks (7<)

o

o

o

Slide 89 ° ’
o \Ni. (kl)
o ~
S WNa (k)
TSN, (ky) o (k)
(2) o (b)

Figure 12.7 Two examples of a topological neighborhood

Hansung Univ. S.H. Jung

Neural Networks

Adaptive Resonance Theory

46

e ART1, ART2, and ART3 developed by Carpenter and Grossberg [1987, 1988,
1990]

e input and stored prototype are said to be resonate when they are sufficiently
Slide 90 similar
if not, a new node is then created to represent a new category

e sufficiently similar depends on a vigilance parameter p, with 0 < p <1
— if p is small, resulting in a coarse categorization

— otherwise, finely divided categories

Adaptive Resonance Theory (7]%)

lateral inhibition

Slide 91

Hansung Univ. S.H. Jung

Neural Networks 47

Adaptive Resonance Theory (#|%)

e Algorithm ART1: Adaptive Resonance Theory for Binary Inputs
Input: a set of pattern vector x,x € {0,1}™
Output: A set of weight vectors w; = (w1, ws2, ..., wim)%,i=1,2,...,n
—n clusters found
step O: initialization: set w;;(0) = 1,@;;(0) =1/(14+m), for 0 < p <1
step 1. present a new pattern z to the input nodes
Slide 92 step 2. enable all the output nodes
step 3. use bottom-up processing to obtain a weight sum y; = (W])x = 22”21 Wi; T4
where w;; is the normalization of w;; given by
,i=1,2,...,m, where (usually € = 0.5)

Wig = —Did
U ey wi

step 4. find the output node 7 with largest y; value
step 5. verify that x belongs to the ith cluster by top-down processing

m
E L wiT

IF r = ==L
[Tx[]

THEN x belongs to the ith cluster, proceed to step 6

> > p, where || x ||= Z;-nﬂ | z; |

Adaptive Resonance Theory (7]%)

ELSE IF the top layer has more than a single enabled node left, then go to
step 7
ELSE create a new output node 4 with its initial weights set as in step 0 and
Slide 93 go to step 6
step 6. update the weights as follows: w;;(t + 1) = w;;(¢)x;,5 = 1,2,...,m then go
tostep 1
step 7. the output node ¢ is disabled by clamping y; to 0. then go to step 3

e ex. 12-3) (see textbook)

Hansung Univ. S.H. Jung

Neural Networks

The others

48

e the other topics

Slide 94 -

radial basis function networks
hierarchical networks—neocognitron
multilayer recurrent neural network
time-delay neural networks
wavelet neural networks

reinforcement learning algorithms

Hansung Univ.

S.H. Jung

