Á¤¼ºÈÆ
    2016 ÀΰøÁö´É ±â¸»°úÁ¦ Á¶Æí¼º ¹× ÁÖÁ¦
2016 ÀΰøÁö´É ±â¸»°úÁ¦ ¸ñ·Ï.hwp [33 KB]    



ÀΰøÁö´É (ÇÕ¹Ý) ±â¸»°úÁ¦ Á¶ Æí¼º ¹× ÁÖÁ¦

Á¶

Á¶¿ø

ÁÖÁ¦¸í

±âŸ

1

±è°æȯ, ±è¼º¸®, ÃÖ½ÂÈ£

ȫäÀÎ½Ä ¹× ȫäÀ§Á¶¹æÁö¹æ¹ý

CNNÀ¸·Î ȫäÀÎ½Ä ¹× À§Á¶¹æÁö

CNN + RNN À¸·Î À§Á¶¹æÁö

2

±è»ó¿ø, ±èÀ¯Á¤

¿À¹ö¿öÄ¡ ¿µ¿õ¼±Åà µµ¿ì¹Ì

ANNÀ¸·Î ³»°¡ ¼±ÅÃÇÒ Ä³¸¯ÅÍ Ãßõ

ANN ÀÔ·Â

l Àû±º 6 ij¸¯ÅÍ

l ¿ì±º 5 ij¸¯ÅÍ

l ÀüÀå µî ±âŸ Á¤º¸

ANN Ãâ·Â

l 22°³ ij¸¯ÅÍ

ÇнÀµ¥ÀÌÅÍ

l ¸¹Àº °ÔÀÓÀÇ ½Â·ü°á°ú·Î ÇнÀ

3

±èÁÖÇö, À±Å½Ä

ÀÛ¸í ¾îÇø®ÄÉÀ̼Ç

±âÁ¸ÀÇ ÀÛ¸í¹æ¹ý Âü°í

»õ·Î¿î ¹æ¹ý·Ð ¸¸µé¾î¼­ °³¹ß

4

±èÇö¿ì, ±Ýµ¿ÇÏ, Á½ÂÇÑ

DNN¿¡¼­ Overfitting ¸·´Â ¾Ë°í¸®Áò

Overfitting measure °ËÅä

±âÁ¸ Drop-out ±â¹ý ºÐ¼®

»õ·Î¿î Drop-out ±â¹ý °³¹ß

5

¹èÁöȯ, ¿°½ÂÇö

¼­¸íÀÎ½Ä ¾Ë°í¸®Áò

¼­¸íÀ» CNN-RNNÀ¸·Î ÇнÀ

½Ã°ø°£Á¤º¸¸¦ ÀÌ¿ëÇÏ¿© °³ÀÎ ÀÎÁõ

À§Á¶ÆǺ° ¾Ë°í¸®Áò È­

6

À̽ÂÁØ

Chat BotÀ» ÀÌ¿ëÇÑ À½½ÄÃßõ ÇÁ·Î±×·¥

À½½ÄÃßõ ¹æ¹ý¿¡ ´ëÇÏ¿© ÁýÁßÇÏ¿© °³¹ß

Chat BotÀ» ÅëÇÏ¿© ¼±È£À½½Ä Á¤º¸¸¦ ÀÔ·Â

¼±È£À½½ÄÀ» ÅëÇÏ¿© °³ÀÎ À½½ÄÃëÇâÀ» ¾î¶»°Ô ÃßÃâÇÒÁö°¡ ÇÙ½ÉÀÓ

7

ÀåÇö¿ì, ¿¬ÀçÈì

WFSO¸¦ ÀÌ¿ëÇÑ µö·¯´×

WFSO ¾Ë°í¸®ÁòÀ» DNN ÇнÀ¿¡ ÀÌ¿ë

º¹ÀâÇÑ ¹®Á¦¿¡ ´ëÇÏ¿© ±âÁ¸ BP ¿Í ¼º´ÉÂ÷ÀÌ ºÐ¼®

WFSO ÆĶó¹ÌÅÍ ¹× ¾Ë°í¸®Áò ÃÖÀûÈ­

 

¹Ì¹ßÇ¥ÀÚ

±ÇÈ¿¼º(Ãë), À±Á¾¼­

  µî·ÏÀÏ : 2016-10-26 [16:43] Á¶È¸ : 1614 ´Ù¿î : 420   
 
¡â ÀÌÀü±ÛEnd to End Learning for Self-Driving Cars
¡ä ´ÙÀ½±ÛSOFM ÇнÀ ¾Ë°í¸®Áò ¿¹
ÀΰøÁö´É
¹øÈ£ ¨Ï Á¦ ¸ñ À̸§ Á¶È¸ µî·ÏÀÏ
ÀΰøÁö´É Âü°í »çÀÌÆ®
±â¸»°úÁ¦ ÁÖÁ¦ ¼±Á¤ ½Ã °í·ÁÇØ¾ß ÇÒ »çÇ×µé (°è¼Ó ¾÷µ¥ÀÌÆ®) ¡Ú¡Ú¡Ú
±â¸»°úÁ¦ ÁÖÁ¦ ¾ÆÀ̵ð¾î(°è¼Ó ¾÷µ¥ÀÌÆ®)
±â¸»°úÁ¦ ÁÖÁ¦ (°è¼Ó ¾÷µ¥ÀÌÆ®)
±â¸»°úÁ¦ Á¦¾È¹ßÇ¥ ³»¿ë
±â¸»°úÁ¦ ÃÖÁ¾¹ßÇ¥ ³»¿ë
±â¸»°úÁ¦ ÃÖÁ¾º¸°í¼­ ³»¿ë
87 ¦¦❶ lIntroduction to Deep Learning with TensorFlow Á¤¼ºÈÆ 1044 06-02
86 ¦¦❶ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems Á¤¼ºÈÆ 1069 06-02
85 ¦¦❶ Neural Networks for Beginners Á¤¼ºÈÆ 1042 06-02
84 l¸®´ª½º¼­¹ö Á¤º¸ ºñ°ø°³ Á¤¼ºÈÆ 41 11-25
83 ¦¦❶ tensorflow ±¸µ¿ ºñ°ø°³ Á¤¼ºÈÆ 26 12-02
82    ¦¦❷ lteamviewer »ç¿ë ¹æ¹ý ºñ°ø°³ Á¤¼ºÈÆ 26 12-02
81 Schema Theorem Á¤¸® ºñ°ø°³ Á¤¼ºÈÆ 46 11-22
80 CNN ±¸Á¶ ¼³¸í ºñ°ø°³ Á¤¼ºÈÆ 157 11-10
79 ¦¦❶ CNN ÄÁ¹ú·ç¼Ç µ¿ÀÛ ¼³¸í Á¤¼ºÈÆ 798 10-17
78 ¦¦❶ lCNN, Convolution Neural Network ¿ä¾à Á¤¼ºÈÆ 1001 10-17
77 ÀÚÀ²ÁÖÇà °ü·Ã ÀÚ·á Á¤¼ºÈÆ 1241 11-02
76 ¦¦❶ lEnd to End Learning for Self-Driving Cars Á¤¼ºÈÆ 1928 11-02
75 2016 ÀΰøÁö´É ±â¸»°úÁ¦ Á¶Æí¼º ¹× ÁÖÁ¦ Á¤¼ºÈÆ 1614 10-26
74 SOFM ÇнÀ ¾Ë°í¸®Áò ¿¹ ºñ°ø°³ Á¤¼ºÈÆ 102 10-13
73 ¦¦❶ Lecture 18 - Kohonen SOM Á¤¼ºÈÆ 1324 11-10

[1][2][3][4][5][6][7][8]