Á¤¼ºÈÆ
    code_14_10_2.py (±³Àç)
  http://itsys.hansung.ac.kr/cgi-bin/onlineTest/viewpy4AI/onlinePy4AI.cgi?source=src/py/Ch14/code_14_10_2.py



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# µû¶óÇϸ砹è¿ì´Â ÆÄÀ̽ã°ú µ¥ÀÌÅÍ°úÇÐ(»ý´ÉÃâÆÇ»ç 2020)
# 14.10 Ã¼Áú·®Áö¼ö¿Í ´ç´¢¼öÄ¡´Â ¾î¶² »ó°ü°ü°è°¡ ÀÖÀ»±î, 379ÂÊ
#
from sklearn import datasets 
from sklearn import linear_model 
import numpy as np 
from sklearn.model_selection import train_test_split
 
# ´ç´¢º´ µ¥ÀÌÅÍ ¼¼Æ®¸¦ sklearnÀÇ µ¥ÀÌÅÍÁýÇÕÀ¸·ÎºÎÅÍ ÀоîµéÀδÙ. 
diabetes = datasets.load_diabetes()
 
X_train, X_test, y_train, y_test = train_test_split(diabetes.data[:, np.newaxis, 2],
                                                    diabetes.target,
                                                    test_size = 0.2
regr = linear_model.LinearRegression() 
regr.fit(X_train, y_train)
 
score = regr.score(X_train, y_train)
print(score)
score = regr.score(X_test, y_test)
print(score)
cs

  µî·ÏÀÏ : 2022-12-06 [02:05] Á¶È¸ : 342 ´Ù¿î : 0   
 
¡â ÀÌÀü±Ûcode_14_12.py (±³Àç)
¡ä ´ÙÀ½±Ûcode_14_10_1.py (±³Àç)
Python for AI ½Ç½À°Ô½ÃÆÇ
¹øÈ£ ¨Ï Á¦ ¸ñ Á¶È¸ µî·ÏÀÏ
lAnaconda3 ¼³Ä¡
lColabTurtlePlus
l½Ç½À ¸ñ·Ï
lColab ½Ç½À
l½Ç½À ½Ã ÇлýµéÀÌ ÀÚÁÖÇÏ´Â ½Ç¼ö ¿¹µé
361    ¦¦❷ lcode_14_22_1.py (±³Àç) 491 12-06
360 ¦¦❶ lcode_14_20.py (±³Àç) 393 12-06
359 ¦¦❶ lcode_14_19.py (±³Àç) 359 12-06
358 ¦¦❶ lcode_14_18.py (±³Àç) 357 12-06
357 ¦¦❶ lcode_14_17.py (±³Àç) 356 12-06
356 ¦¦❶ lcode_14_16.py (±³Àç) 356 12-06
355 ¦¦❶ lcode_14_13.py (±³Àç) 350 12-06
354 ¦¦❶ llab_14_2.py (±³Àç) 395 12-06
353 ¦¦❶ lcode_14_12.py (±³Àç) 377 12-06
352 ¦¦❶ lcode_14_10_2.py (±³Àç) 342 12-06
351 ¦¦❶ lcode_14_10_1.py (±³Àç) 377 12-06
350 ¦¦❶ lcode_14_9.py (±³Àç) 367 12-06
349 ¦¦❶ llab_14_1.py (±³Àç) 377 12-06
348 ¦¦❶ lcode_14_8.py (±³Àç) 387 12-06
347 ¦¦❶ lcode_14_7.py (±³Àç) 403 12-06
346 (13Àå) ½Ã°¢ Á¤º¸¸¦ ´Ù·ç¾îº¸ÀÚ 484 02-19
345 ¦¦❶ lch13.ipynb (¿¹Á¦ Àüü) 645 03-01
344 (12Àå) ÆÇ´Ù½º·Î µ¥ÀÌÅ͸¦ ºÐ¼®Çغ¸ÀÚ 778 02-19
343 ¦¦❶ lch12.ipynb (¿¹Á¦ Àüü) 771 03-01
342 ¦¦❶ lcode_12_23.py (±³Àç) 652 02-21

[1][2][3][4][5][6][7][8][9][10]-[Next][20]