Á¤¼ºÈÆ
    lab_14_2.py (±³Àç)
  http://itsys.hansung.ac.kr/cgi-bin/onlineTest/viewpy4AI/onlinePy4AI.cgi?source=src/py/Ch14/lab_14_2.py



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# µû¶óÇϸ砹è¿ì´Â ÆÄÀ̽ã°ú µ¥ÀÌÅͰúÇÐ(»ý´ÉÃâÆÇ»ç 2020)
# LAB 14-2 µ¥ÀÌÅÍ 80%·Î ÇнÀÇÏ¿© ¿¹ÃøÇÑ °á°ú¿Í ½ÇÁ¦ µ¥ÀÌÅÍ ºñ±³, 382ÂÊ
#
import numpy as np 
from sklearn import linear_model  # scikit-learn ¸ðµâÀ» °¡Á®¿Â´Ù
from sklearn import datasets
import matplotlib.pyplot as plt
 
diabetes = datasets.load_diabetes()
regr = linear_model.LinearRegression() 
# ÇнÀ µ¥ÀÌÅͿ͠Å×½ºÆ® µ¥ÀÌÅ͸¦ ºÐ¸®ÇÑ´Ù. 
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(diabetes.data,
                                                    diabetes.target,
                                                    test_size=0.2
regr.fit(X_train, y_train)
print(regr.coef_, regr.intercept_)
 
y_pred = regr.predict(X_test)
 
plt.scatter(y_pred, y_test)
plt.show()
cs

  µî·ÏÀÏ : 2022-12-06 [02:07] Á¶È¸ : 110 ´Ù¿î : 0   
 
¡â ÀÌÀü±Ûcode_14_13.py (±³Àç)
¡ä ´ÙÀ½±Ûcode_14_12.py (±³Àç)
Python for AI ½Ç½À°Ô½ÃÆÇ
¹øÈ£ ¨Ï Á¦ ¸ñ Á¶È¸ µî·ÏÀÏ
lAnaconda3 ¼³Ä¡
lColabTurtlePlus
l½Ç½À ¸ñ·Ï
lColab ½Ç½À
l½Ç½À ½Ã ÇлýµéÀÌ ÀÚÁÖÇÏ´Â ½Ç¼ö ¿¹µé
353    ¦¦❷ lcode_14_22_1.py (±³Àç) 114 12-06
352 ¦¦❶ lcode_14_20.py (±³Àç) 111 12-06
351 ¦¦❶ lcode_14_19.py (±³Àç) 81 12-06
350 ¦¦❶ lcode_14_18.py (±³Àç) 92 12-06
349 ¦¦❶ lcode_14_17.py (±³Àç) 103 12-06
348 ¦¦❶ lcode_14_16.py (±³Àç) 82 12-06
347 ¦¦❶ lcode_14_13.py (±³Àç) 91 12-06
346 ¦¦❶ llab_14_2.py (±³Àç) 110 12-06
345 ¦¦❶ lcode_14_12.py (±³Àç) 117 12-06
344 ¦¦❶ lcode_14_10_2.py (±³Àç) 96 12-06
343 ¦¦❶ lcode_14_10_1.py (±³Àç) 99 12-06
342 ¦¦❶ lcode_14_9.py (±³Àç) 101 12-06
341 ¦¦❶ llab_14_1.py (±³Àç) 91 12-06
340 ¦¦❶ lcode_14_8.py (±³Àç) 98 12-06
339 ¦¦❶ lcode_14_7.py (±³Àç) 94 12-06
338 (13Àå) ½Ã°¢ Á¤º¸¸¦ ´Ù·ç¾îº¸ÀÚ 209 02-19
337 ¦¦❶ lch13.ipynb (¿¹Á¦ Àüü) 259 03-01
336 (12Àå) ÆÇ´Ù½º·Î µ¥ÀÌÅ͸¦ ºÐ¼®Çغ¸ÀÚ 349 02-19
335 ¦¦❶ lch12.ipynb (¿¹Á¦ Àüü) 323 03-01
334 ¦¦❶ lcode_12_23.py (±³Àç) 223 02-21

[1][2][3][4][5][6][7][8][9][10]-[Next][19]